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a b s t r a c t 

When kinematic control of robot manipulator is modeled as time-varying problems, con- 

trol algorithms generated by solving time-varying problems perform well in the aspect 

of real-time control and control precision. However, conventional algorithms are based 

on relatively simple time-varying problems modeling and solving, and thus, it is difficult 

for them to solve more other problems while completing tracking task. In this work, the 

kinematic control of robot manipulator is first modeled as more complicated multilayered 

time-varying problem, which simultaneously formulates the tracking task and joint angle 

limits. Then, zeroing neural dynamics method is future investigated to find the equiva- 

lence of multilayers. Finally, three explicit solutions based on three discretization formulas 

are presented to solve the multilayered time-varying problem. The presented solutions not 

only complete the tracking task in real time with different precision, but also solve the 

problem of joint angle limits during the control process. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Real-time tracking control of robot manipulator is a fundamental topic in robotics, which has been investigated by nu- 

merous researchers [1,2] . The problem of joint angle limits must be considered during the control process. If not, the track-

ing task could not be completed and the hardware of robot manipulator could damage [3,4] . The kinematic tracking control

problem is formulated as to find a joint angle trajectory θ (t) such that f (θ (t)) = r d (t) is satisfied for a given desired path

in the task space r d (t) [5] . Classical methods include inverse Jacobi method [6] , sliding mode method [7,8] , Newton-based

method [9] and optimal control [10] to solve this problem. For example, in [8] , a suboptimal sliding mode control method

was derived from combination of the sliding mode control and the state-dependent Riccati equation technique, applied for 

nonlinear robot systems. One of the distinguished features of this control method in [8] is its robustness towards uncertainty.

However, these methods use the direct kinematic mappings for robot manipulators in a static/time-invariant perspective, i.e., 

f (θ ) = r and J(θ ) ̇ θ = 

˙ r , where J(θ ) is the Jacobi matrix of robot manipulator. Most of them often implicitly assume that the

start robot joint angle corresponds to the initial desired position of end-effector, which is not satisfied in practice generally 

[9] . Besides, the time-invariant modeling leads to lagging control and effects the real-time [11] . 
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Table 1 

Detailed differences between previous works and 

the present study. 

Paper A B C D 

[3,4] Monolayer No Yes Yes 

[25,26] Multilayers No No Yes 

[27–31] Multilayers Yes Yes No 

This paper Multilayers Yes Yes Yes 

A: Multilayers vs monolayer. B: Calculate joint angle 

predictively. C: Start with random joint angles. D: 

Consider all joint angle limits including upper and 

lower bounds. 

 

 

 

 

 

(

(

Increasing researchers pay attention to the investigation of time-varying problems recent years and various kinds of 

time-varying problems have been investigated and solved [12,13] . Jin et al. [14] solved time-varying matrix inversion from 

a control-theoretical perspective. Zhang et al. [15] presented an integral recurrent neural network to solve time-varying 

Sylvester equation. Li et al. [16] presented a variable-gain finite-time convergent recurrent neural network to solve time- 

varying quadratic programming with unknown noises endured. Wei et al. [17] presented a noise-tolerant neural algorithm 

to solve time-varying nonlinear optimization with estimation on Hessian matrix inversion. 

With the development of time-varying problems solving, researchers rethink the problem of robot manipulator tracking 

control and study it in a time-varying perspective [18] . The main idea of this method is modeling the tracking control

problem as time-varying problems, and then solving the tracking control problem via solving the time-varying problems 

[19] . A biological-heuristic optimization model based on time-varying perspective was developed to control active sensing 

of robot arms in [20] . Robots’ kinematic control was modeled as time-varying nonlinear equations and solved by utilizing a

noise-tolerant zeroing dynamics design formula in [21] . Repetitive motion planning of robotic manipulators was solved in a 

time-varying perspective with guaranteed precision in [22] . The solution of time-varying generalized Sylvester equation was 

employed to robot manipulator control in [23] . A complex-valued discrete-time neural dynamics model for solving perturbed 

time-dependent complex quadratic programming was applied to robot manipulator control in [24] . 

The above mentioned studies of robot manipulator control based on time-varying problems solving have advantages on 

real-time computation and control precision. However, these studies formulate the complicated robot tracking control prob- 

lems as relatively simple-layered time-varying problems, such as linear equations system, matrix inversion problem and 

quadratic programming. Recently, multilayered time-varying problems are investigated and applied to the robot manipu- 

lator control. For example, time-varying linear equation and inequality systems were investigated in [25] , and perturbed 

multilayered linear systems were studied in [26] . They are employed to the robot manipulator control with all joint angle

limits considered including upper and lower bounds. However, the presented solutions are continuous-time, which are im- 

plemented by ode solvers. Thus, the presented solutions do not calculate joint angle predictively, which leads to relatively 

weak real-time performance. Besides, the presented solutions assume the initial joint angle corresponds to initial desired 

path, which is hard to be satisfied in reality. Discrete-time solutions were presented to solve multilayered time-varying 

equalities and inequalities, and further control planar robot manipulator and mobile robot in [27,28] . Multilayered time- 

varying linear and nonlinear equations were investigated and applied to robot manipulator with partial joint angle limits 

conquered in [29] . The robot manipulator control was formulated as multilayered linear equations and nonlinear equations 

respectively in [30] and [31] . The performances of presented solutions and the proposed solution in this paper are listed

and compared in Table 1 . 

In this work, the robot manipulator tracking control is firstly directly formulated as multilayered time-varying prob- 

lem with all joint angle limits including upper and lower bounds considered. Then, the multilayered time-varying problem 

is equivalently converted into a relatively easily solved equation on the basis of zeroing neural dynamics method, and a 

continuous-time solution is developed. Finally, explicit solutions is proposed based on different discretization formulas and 

the continuous-time solution. 

The remainder of this paper is organized into four sections. Section 2 formulates the robot manipulator control as multi- 

layered time-varying problem. Section 3 solves this problem via zeroing neural dynamics method and discretization formu- 

las. Section 4 presents some numerical experimental results to verify the effectiveness and superiority of proposed solution. 

Section 5 concludes this paper with final remarks. Before ending this section, the main contributions of this paper are listed

in the following facts. 

1) Robot manipulator tracking control is directly formulated as multilayered time-varying problem with all joint angle limits 

considered including time-varying upper and lower bounds. Note that the constant bounds are special cases of time- 

varying bounds, which are investigated simultaneously. 

2) Three explicit four-step solutions are proposed to solve the multilayered time-varying problem based on the continuous- 

time solution and three discretization formulas. Note that the continuous-time solution is based on the study of zeroing 
neural dynamics method. 
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2. Multilayered time-varying modeling 

From a time-varying perspective, the kinematic equation of robot manipulator [1] is formulated as 

f (θ (t)) = r a (t) , (1) 

where θ (t) ∈ R 

n is the joint angle vector; r a (t) ∈ R 

m is the actual trajectory of end-effector; and f (·) is the map between the

joint angle and the actual trajectory of end-effector. The inverse kinematic control of robot manipulator is to find a feasible

solution θ (t) so that the actual trajectory of end-effector tracks the time-varying desired path quickly, i.e., r a (t) → r d (t) ,

where r d (t) is the time-varying desired path. It is formulated as the following time-varying equation 

r a (t) − r d (t) = 0 . 

Furthermore, based on the kinematic Eq. (1) , we have the first layer equation to be solved as below: 

f (θ (t)) − r d (t) = 0 . (2) 

Joint angle limits of robot manipulator are the range of joint angle during the control process, which is dynamically 

formulated as 

θ−(t) ≤ θ (t) ≤ θ+ (t) , (3) 

where θ−(t) and θ+ (t) are time-varying upper and lower bounds of the controlled variable θ (t) . (3) can be reformulated

as the second and third time-varying layers as below: {
θ (t) − θ+ (t) ≤ 0 , 

−θ (t) + θ−(t) ≤ 0 , 
(4) 

where θ (t) − θ+ (t) ≤ 0 means each elements of vector θ (t) − θ+ (t) are less than or equal to 0. Combining the first, second

and third layers yields the following multilayered time-varying equation ⎧ ⎨ 

⎩ 

f (θ (t)) − r d (t) = 0 , 

θ (t) − θ+ (t) ≤ 0 , 

−θ (t) + θ−(t) ≤ 0 , 

(5) 

which simultaneously formulates the time-varying tracking task and joint angle limits constraints. 

The superiority of the model (5) to formula the robot manipulator control is shown compared with the presented models 

in [1,30] (i.e., model (9) in [1] and model (1)-(2) in [30] ). Firstly, [1] formulas the robot manipulator control as single layered

time-varying nonlinear equation as follows: 

r a (t) − r d (t) = 0 , 

i.e., 

f (θ (t)) − r d (t) = 0 . 

That equation only considers the tracking task, and thus the corresponding solution could not complete other task. Fur- 

thermore, [30] models the robot manipulator control as multilayered time-varying linear system, which is formulated as 

follows: {
A (t) θ (t) = b (t) , 

J(θ (t)) ˙ θ(t) = 

˙ r d (t) − λ(f (θ (t)) − r d (t)) . 

The second equality formulas the tacking task and the first equality could be constructed as needed to complete other 

task. However, that work only investigates equalities instead of inequalities, which is difficult to formulate joint angle limits. 

Specifically, please see Example 3 of [30] , by constructing the matrix A (t) as [ sin (0 . 5 t) + 2 , 0 , 0] , and the vector b (t) as π/ 2 ,

only the first joint angle conquers the joint limits instead of all joint angle limits (When all joint angle limits are considered

by equalities, the basic tracking task could not be formulated because of overdetermination), which is less practical in re- 

ality. In contrast, this work models the robot manipulator control as multilayered equality and inequality equations, which 

formulate the tracking task by equality and formulates all joint angle limits by inequalities. Thus, the corresponding solution 

proposed in this work to solve (5) could simultaneously solve the problem of tracking time-varying desired path and the 

problem of all joint angle limits. 

3. Zeroing neural dynamics solving and time discretization 

In this section, multilayered time-varying Eq. (5) is solved based on zeroing neural dynamics and a discretization formula. 
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3.1. Equivalency analyses and continuous-time solution 

The three layers of multilayered time-varying Eq. (5) have to be equivalently converted into other forms so that they can

be unified and solved together. Equivalency analyses based on zeroing neural dynamics [32] are presented by the following 

lemmas, corollary and theorems. 

Lemma 1. If the parameter λ > 0 and t → + ∞ , then the first layer of (5) , i.e., f (θ (t)) − r d (t) = 0 , is equivalent to 

J(θ (t)) ˙ θ(t) = 

˙ r d (t) − λ(f (θ (t)) − r d (t)) , (6) 

where J(θ (t)) is the Jacobi matrix of the robot manipulator and ˙ r d (t) is the time derivative of desired path. 

Proof. The proof process is given in Appendix A . �

Lemma 2. Define a vector γ (t) ∈ R 

n as [ γ1 (t) , γ2 (t) , ..., γn (t)] T , and a vector γ . 2 (t) ∈ R 

n as [ γ 2 
1 
(t) , γ 2 

2 
(t) , ..., γ 2 

n (t)] T . If the

parameter λ > 0 and t → + ∞ , then the second layer of (5) , i.e., θ (t) − θ+ (t) ≤ 0 , is equivalent to 

[
I 2�(t) 

][ ˙ θ (t) 

˙ γ (t) 

]
= 

˙ θ+ (t) − λ
(
θ (t) − θ+ (t) + γ . 2 (t) 

)
(7) 

where I ∈ R 

n ×n is the identity matrix; and �(t) is denoted as below: 

�(t) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

γ1 (t) 0 · · · 0 

0 γ2 (t) · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · γn (t) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Proof. The proof process is given in Appendix B . �

Corollary 1. Define a vector η(t) ∈ R 

n as [ η1 (t) , η2 (t) , ..., ηn (t)] T , and a vector η. 2 (t) ∈ R 

n as [ η2 
1 
(t) , η2 

2 
(t) , ..., η2 

n (t)] T . If the

parameter λ > 0 and t → + ∞ , then the third layer of (5) , i.e., −θ (t) + θ−(t) ≤ 0 , is equivalent to 

[
−I 2�(t) 

][ ˙ θ (t) 

˙ η(t) 

]
= − ˙ θ−(t) − λ

(
η. 2 (t) − θ (t) + θ−(t) 

)
(8) 

where �(t) is denoted as below: 

�(t) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

η1 (t) 0 · · · 0 

0 η2 (t) · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · ηn (t) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Based on the above lemmas and corollary, we have the following theorem to convert the multilayered time-varying 

Eq. (5) into a more solvable equation. 

Theorem 1. If the parameter λ > 0 and t → + ∞ , then multilayered time-varying Eq. (5) is equivalent to 

W (y (t)) ̇ y (t) = d (t) , (9) 

where y (t) = [ θT (t ) , γ T (t ) , ηT (t )] T , 

W (y (t)) = 

⎡ 

⎣ 

J(θ (t)) 0 0 

I 2�(t) 0 

−I 0 2�(t) 

⎤ 

⎦ (10) 

and 

d (t) = 

⎡ 

⎢ ⎣ 

˙ r d (t) − λ(f (θ (t)) − r d (t)) 

˙ θ+ (t) − λ
(
θ (t) − θ+ (t) + γ . 2 (t) 

)
− ˙ θ−(t) − λ

(
η. 2 (t) − θ (t) + θ−(t) 

)
⎤ 

⎥ ⎦ 

. 

Proof. Based on Lemma 1, Lemma 2 and Corollary 1 , if the parameter λ > 0 and t → + ∞ , then the first, second and third

layer of multilayered time-varying Eq. (5) is equivalently converted into Eqs. (6) , (7) and (8) , respectively. Combining (6),

(7) and (8) yields (9) , and thus, if the parameter λ > 0 and t → + ∞ , then multilayered time-varying Eq. (5) is equivalent to

(9) . �
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Based on the equivalency between (5) and (9) , the continuous-time solution is obtained to solve multilayered time- 

varying Eq. (5) as below: 

˙ y (t) = W 

+ (y (t )) d (t ) , (11) 

where + denotes pseudo-inverse operation. It is an equation of explicit neural dynamics. We assume that matrix W (y (t)) is

always non-singular. 

Remark 1. continuous-time solution (11) is based on the three equivalent equations in Lemma 1, Lemma 2 and Corollary 1 .

In terms of tracking task, the first layer of (5) , i.e., f (θ (t)) − r d (t) = 0 , is equivalent to (6) . This equivalence is based on linear

design formula of zeroing neural dynamics i.e., ˙ e (t) = −λe (t) [1] . This design formula makes the equivalent Eq. (6) globally

exponentially convergent. Thus, continuous-time solution (11) makes the actual trajectory r a (t) converge to desired path 

r d (t) globally and exponentially. 

3.2. Solutions and theoretical analyses 

Based on previous work [1] , the continuous-time solution should be discretized by effective one-step-ahead discretization 

formulas, so that the corresponding solutions could calculate the control variable in predictive way, and then satisfy the 

requirement of real-time computation. 

In this work, we utilize three one-step-ahead discretization formulas. Euler formula [33] is the first effective discretization 

formula, which is shown as 

˙ x k (t) = 

x (t k +1 ) − x (t k ) 

δ
+ O ( δ) , 

where δ is the time sampling gap. Utilizing Euler formula to discretize continuous-time solution (11) generates an explicit 

one-step solution as below: 

y (t k +1 ) = y (t k ) + δg (y (t k ) , t k ) , (12) 

where 

g (y (t k ) , t k ) = W 

+ (y (t k )) d (t k ) . (13) 

Formula in [34] is shown as 

˙ x (t k ) = 

2 x (t k +1 ) − 3 x (t k ) + 2 x (t k −1 ) − x (t k −2 ) 

2 δ
+ O ( δ2 ) . (14) 

Utilizing formula (14) to discretize continuous-time solution (11) generates the following explicit three-step solution: 

y (t k +1 ) = 

3 

2 

y (t k ) − y (t k −1 ) + 

1 

2 

y (t k −2 ) + δg (y (t k ) , t k ) . (15)

Another formula, which is obtained by Taylor expansion, is presented as 

˙ x (t k ) = 

50 

111 δ
x (t k +1 ) + 

7 

222 δ
x (t k ) −

11 

37 δ
x (t k −1 ) −

67 

222 δ
x (t k −2 ) + 

13 

111 δ
x (t k −3 ) + O (δ3 ) . (16)

Utilizing formula (16) to discretize continuous-time solution (11) generates an explicit four-step solution as below: 

y (t k +1 ) = − 7 

100 

y (t k ) + 

33 

50 

y (t k −1 ) + 

67 

100 

y (t k −2 ) −
13 

50 

y (t k −3 ) + δ
111 

50 

g (y (t k ) , t k ) . (17)

Solution (17) is relatively universal, which can be implemented in any robot manipulator system when kinematic pa- 

rameters are known. Based on the above process, multilayered time-varying problem including equalities and inequalities 

could be solved by using solution (17) . Real-time implementation of explicit four-step solution (17) is shown in Algorithm .

Besides, solution (17) has advantages in the aspect of real-time computation, convergence and joint angle limits conquering. 

The corresponding discussions are presented as below: 

1) Solution (17) satisfies the requirement of real-time computation via predicting future-instant solution. Specifically, so- 

lution (17) uses information at t k e.g., W (y (t k )) , ˜ d (t k ) , and information before t k , e.g., y (t k −1 ) , y (t k −2 ) , to predictively

calculate future control variable θ (t k +1 ) , which is exactly the first n elements of y (t k +1 ) . In this way, the inevitable time

consuming of solution computation does not lead to the lag of tracking control. 

2) For solution (17) , initial position of end-effector could be away from desired position, and then it quickly tacks the

desired path. 

3) Solution (17) solves the problem of joint angle limits, not just completes the basic tracking task. Solution (17) is to solve

multilayered time-varying problem (5) , which models both the tracking problem and the joint angle limits via three 

layers, and thus, solution (17) could simultaneously solve the problem of tracking time-varying desired path and the 
problem of joint angle limits. 
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Algorithm Real-time implementation of explicit four-step solution (17) 

1. Initialize: Arbitrarily set θ (t 0 ) , γ (t 0 ) , η(t 0 ) . Set sampling gap τ , parameter κ and task duration t f . Updating index k = 0 . 

2. While( t k ≤ t 3 ) 

3. Get current data at time t k including θ+ (t k ) , θ
−(t k ) , ˙ θ+ (t k ) , ˙ θ−(t k ) , r d (t k ) and 

˙ r d (t k ) . 

4. Calculate matrix W (y (t k ) by (10); Calculate vector ˜ d (t k ) by (13). 

5. Predict future value y (t k +1 ) , which contains θ (t k +1 ) , γ (t k +1 ) and η(t k +1 ) , by solution (12). 

6. Convert the joint angle value θ (t k +1 ) to control signal and control the robot manipulator. 

7. When time t k +1 comes, index k = k + 1 . 

8. While( t k ≤ t f ) 

9. Get current data at time t k including θ+ (t k ) , θ
−(t k ) , ˙ θ+ (t k ) , ˙ θ−(t k ) , r d (t k ) and 

˙ r d (t k ) . 

10. If derivative data ( ̇ θ+ (t k ) , ˙ θ−(t k ) and 

˙ r d (t k ) ) are unknown 

11. Calculate derivative data approximately by (18). 

12. Calculate matrix W (y (t k ) by (10); Calculate vector ˜ d (t k ) by (13). 

13. Predict future y (t k +1 ) by solution (17). 

14. Convert the joint angle value θ (t k +1 ) to control signal and control the robot manipulator. 

15. When time t k +1 comes, index k = k + 1 . 

16.~End 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 2. To complement explicit four-step solution (17) , the values of ˙ r d (t k ) , ˙ θ+ (t k ) and 

˙ θ−(t k ) is necessary, which are

unknown usually. Backward finite difference formula is employed to approximate these first-order derivatives because future 

information θ (t k +1 ) is unknown. To make sure the precision and simplicity, the truncation error of backward finite difference

formula should be equal to that of our discretization formula (16) . Thus, these first-order derivatives in solution (17) can be

approximated by the following backward formula [33] : 

˙ u (t k ) = 

11 

6 δ
u (t k ) −

3 

δ
u (t k −1 ) + 

3 

2 δ
u (t k −2 ) −

1 

3 δ
u (t k −3 ) + O (δ3 ) . (18)

Theoretical analyses on 0-stability, consistency and convergence, which are based on four results in Appendix of [1] for 

an N-step method [35] , are presented. 

Theorem 2. With O (δ4 ) denoting a vector and every element being O (δ4 ) , explicit four-step solution (17) is 0-stable, consistent

and convergent, which converges with the truncation error of order O (δ4 ) . Besides, explicit one-step solution (12) and explicit

three-step solution (15) are also 0-stable, consistent and convergent, which converge with the truncation errors of order O (δ2 )

and O (δ3 ) , respectively. 

Proof. The first characteristic polynomial of explicit four-step solution (17) is 

P 4 (ς ) = ς 

4 + 

17 

100 

ς 

3 − 33 

50 

ς 

2 − 67 

100 

ς + 

13 

50 

, 

of which the roots are ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ς 1 = 1 , 

ς 2 = 0 . 3102 , 

ς 3 = −0 . 6901 + 0 . 6016 i , 

ς 4 = −0 . 6901 − 0 . 6016 i . 

The four roots satisfy the 0-stability condition, and thus, solution (17) is 0-stable. The second characteristic polynomial of 

explicit four-step solution (17) is σ (ς ) = 111 / 50 ς 

3 . Let us observe that P 4 (1) = 0 and P ′ 
4 
(1) = σ (1) � = 0 . Thus, solution (17) is

consistent based on the result on page 338 of [33] . Furthermore, discretization formula (16) can be rewritten as 

x (t k +1 ) = 

111 δ

50 

˙ x (t k ) −
7 

100 

x (t k ) + 

33 

50 

x (t k −1 ) + 

67 

100 

x (t k −2 ) −
13 

50 

x (t k −3 ) + O (δ4 ) . (19)

Thus, solution (17) generated by formula (16) has an truncation error of O (δ4 ) . Finally, according to Dahlquist equivalence

theorem on page 340 of [33] , solution (17) is convergent, which converges with the truncation error of order O (δ4 ) . In terms

of one-step solution (12) and three-step solution (15) , the 0-stability and consistency are guaranteed by similar analyses 

with above. Their truncation errors are O (δ2 ) and O (δ3 ) , respectively. Thus, solution (12) and solution (15) are also 0-stable,

consistent and convergent, which converge with the truncation errors of order O (δ2 ) and O (δ3 ) , respectively. �

4. Numerical experiments and verification 

In this section, some comparative numerical experimental results are presented. For comparisons, conventional solution 

in formula (17) of [1] and solution in formula (22) of [30] are shown, which are based on the models shown in Section 2 .
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Fig. 1. Robot trajectories and end-effector trajectories of planar robot system synthesized by solution (17) . The end-effector from a relatively arbitrary 

initial position quickly tracks the desired path. 

Table 2 

Maximal steady-state tracking error (MSSTE) defined as lim k → + ∞ sup ‖ r a (t k +1 ) − r d (t k +1 ) ‖ and average computing time per updating 

(ACTPU) data when using solution (12) , solution (15) , solution (17) and solution in [1] with different δ values for planar robot manip- 

ulator system with constant joint angle limits as shown in Section 4.1 . 

δ

(ms) 

Solution (12) Solution (15) Solution in [1] Solution (17) 

MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) 

100 5 . 05 × 10 −3 0.3594 3 . 69 × 10 −4 0.3681 5 . 93 × 10 −6 0.1394 6 . 45 × 10 −6 0.5184 

50 1 . 36 × 10 −3 0.3473 5 . 04 × 10 −5 0.3482 4 . 42 × 10 −7 0.1376 4 . 40 × 10 −7 0.5410 

10 5 . 66 × 10 −5 0.3335 4 . 17 × 10 −7 0.3609 8 . 86 × 10 −10 0.1310 9 . 16 × 10 −10 0.4082 

5 1 . 42 × 10 −5 0.3364 5 . 22 × 10 −7 0.3369 5 . 60 × 10 −11 0.1332 5 . 82 × 10 −11 0.3841 

1 5 . 69 × 10 −7 0.3255 4 . 17 × 10 −10 0.3243 9 . 49 × 10 −14 0.1333 9 . 74 × 10 −14 0.3886 

 

 

 

 

 

 

 

Specifically, the conventional solution in formula (17) of [1] is 

θ (t k +1 ) = 

9 

4 

J + (θ (t k )) ( δ ˙ r d (t k ) − κ( f (θ (t k )) − r d (t k ) ) ) 

− 1 

8 

θ (t k ) + 

3 

4 

θ (t k −1 ) + 

5 

8 

θ (t k −2 ) −
1 

4 

θ (t k −3 ) . (20) 

The solution in formula (22) of [30] is 

θ (t k +1 ) = 

16 

7 

F + (t k ) p (t k ) −
4 

21 

θ (t k ) + 

6 

7 

θ (t k −1 ) + 

4 

7 

θ (t k −2 ) −
5 

21 

θ (t k −3 ) , (21)

where 

F (t k ) = 

[
A (t k ) 

J(t k ) 

]

and 

p (t k ) = 

[
−δ( ̇ A (t k ) θ (t k ) − ˙ b (t k )) − κ(A (t k ) θ (t k ) − b (t k )) 

δ ˙ r d (t k ) + κ(r d (t k ) − f (θ (t k ))) 

]
. 

4.1. Planar robot manipulator with constant joint angle limits 

Some numerical experiments are conducted in a system of six-link planar robot manipulator. Its kinematic mapping and 

Jacobi matrix could be found and derived by D-H method [36] . Solution (17) is employed to control the tracking process.

Each link of the planar robot manipulator is 1 m; initial joint angle is θ (t 0 ) = [3 π/ 4 , −π/ 2 , −π/ 4 , π/ 6 , π/ 3 , −π/ 6] rad;

the joint angle limits are [ θ (t 0 ) − π/ 15 , θ (t 0 ) + π/ 9] rad; task duration is 20 s; sampling gap δ = 0 . 01 s. The task is to

track a desired path shown in Fig. 1 , which has bounded fourth-order derivative. This setting guarantees the effectiveness

of discretization formula and corresponding proposed solution. In the on-line control process, the inputs are current data at 

time t k including θ+ (t k ) , θ
−(t k ) , ˙ θ+ (t k ) , ˙ θ−(t k ) , r d (t k ) and 

˙ r d (t k ) , in which derivative data ( ̇ θ+ (t k ) , ˙ θ−(t k ) and 

˙ r d (t k ) ) are

optional. The output is future value θ (t k +1 ) , which could be converted as control signal to control the robot manipulator.

Numerical results are shown in Figs. 1 2 and Table 2 . 
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Fig. 2. Joint angle trajectories of planar robot system synthesized by solution in [1] and solution (17) with constant joint angle limits. Trajectories of every 

joint angles synthesized by solution (17) always stay in the joint angle limits. In contrast, joint angles θ2 (t k +1 ) and θ5 (t k +1 ) synthesized by solution in 

[1] are sometimes beyond the joint angle upper bound or lower bound. 

Fig. 3. Tracking errors of planar robot with constant joint angle limits defined as e (t k +1 ) = ‖ r a (t k +1 ) − r d (t k +1 ) ‖ synthesized by solution (12) , solution 

(15) and solution (17) with δ = 0 . 1 s, δ = 0 . 01 s and δ = 0 . 001 s. When sampling gap δ reduces by a tenth, tracking errors of solutions (12), (15) and 

(17) reduce by 10 −2 , 10 −3 and 10 −4 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) shows the trajectories of robot manipulator and Fig. 1 (b) shows the actual trajectories of end-effector as well

as the time-varying desired path. It can be observed that initial position of end-effector is away from desired position, and

then it quickly tacks the desired path, which means that solution (17) successfully completes the tracking task. 

Furthermore, Fig. 2 shows the trajectories of every joint angles as well as the constant upper and lower bounds. For

comparisons, conventional solution in [1] is also employed. It is observed that trajectories of every joint angles synthesized 

by solution (17) always stay in the joint angle limits. However, as shown in Fig. 2 (b) and (e), joint angles θ2 (t k +1 ) and

θ5 (t k +1 ) synthesized by solution in [1] are sometimes beyond the joint angle upper bound or lower bound. Therefore, it is

verified that solution (17) successfully solves the problem of joint angle limits, while the solution in [1] fails to do it, which

shows the superiority of solution (17) . 

Some numerical experiments are implemented to verify the control precision of solution (17) . For comparisons, solu- 

tion (12) , solution (15) and solution (17) are employed simultaneously. Tracking error is defined as e (t k +1 ) = ‖ r a (t k +1 ) −
r d (t k +1 ) ‖ . Numerical results are shown in Fig. 3 . It is observed that tracking errors synthesized by solution (17) are of order

10 −6 , 10 −10 and 10 −14 with sampling gap δ = 0 . 1 s, 0.01 s and 0.001 s, respectively, which substantiates that the control

precision of solution (17) is δ4 . However, tracking errors synthesized by solution (12) are of order 10 −3 , 10 −5 and 10 −7 with

sampling gap δ = 0 . 1 s, 0.01 s and 0.001 s, respectively. Tracking errors synthesized by solution (15) are of order 10 −4 , 10 −7 

and 10 −10 with sampling gap δ = 0 . 1 s, 0.01 s and 0.001 s, respectively. The superiority of solution (17) in terms of control

precision compared to solutions (12) and (15) is thus substantiated. 

More numerical experimental results are shown in Table 2 , which presents maximal steady-state tracking error (MSSTE) 

defined as lim k → + ∞ 

sup ‖ r a (t k +1 ) − r d (t k +1 ) ‖ and average computing time per updating (ACTPU) data when using solution

(12) , solution (15) , solution (17) and solution in [1] for planar robot manipulator system with constant joint angle limits.

Different situations with sampling gap δ = 0 . 1 , 0.05, 0.01, 0.005 and 0.001 s are considered. It is observed that their ACTPU

data in different situations are smaller than 0.6 ms, which means that the control process is real time even when sampling

gap δ is up to 0.6 ms. ACTPU data of solutions (12), (15) and (17) are smaller than those of solution in [1] because of

relatively complicated structure. Besides, their MSSTE data are consistent with the results in Fig. 3 . 
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Fig. 4. Joint angle of planar robot trajectories synthesized by solution in [1] and solution (17) with time-varying joint angle limits. Trajectories of every 

joint angles synthesized by solution (17) always stay in the joint angle limits. In contrast, some joint angles synthesized by solution in [1] are sometimes 

beyond the joint angle upper bound or lower bound. 

Table 3 

MSSTE and ACTPU data when using solution (12) , solution (15) , solution (17) and solution in [1] with different δ values for planar 

robot manipulator system with time-varying joint angle limits as shown in Section 4.2 . 

δ

(ms) 

Solution (12) Solution (15) Solution in [1] Solution (17) 

MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) 

100 5 . 04 × 10 −3 0.3953 3 . 51 × 10 −4 0.3894 5 . 93 × 10 −6 0.1585 6 . 89 × 10 −6 0.5690 

50 1 . 36 × 10 −3 0.3756 4 . 94 × 10 −5 0.4176 4 . 42 × 10 −7 0.1401 4 . 71 × 10 −7 0.5337 

10 5 . 61 × 10 −5 0.3576 4 . 78 × 10 −7 0.3609 8 . 86 × 10 −10 0.1287 8 . 26 × 10 −10 0.4843 

5 1 . 41 × 10 −5 0.3682 5 . 23 × 10 −7 0.3626 1 . 56 × 10 −11 0.1567 5 . 18 × 10 −11 0.4411 

1 5 . 63 × 10 −7 0.3680 4 . 19 × 10 −10 0.3809 9 . 49 × 10 −14 0.1434 8 . 97 × 10 −14 0.4265 

 

 

 

 

 

 

 

 

 

 

4.2. Planar robot manipulator with time-varying joint angle limits 

Some numerical experiments are also conducted for six-link planar robot manipulator system with time-varying joint 

angle limits. The time-varying lower bound is θ (t 0 ) − π/ 12 + 0 . 25 cos (t) /π and the time-varying upper bound is θ (t 0 ) +
π/ 12 + 0 . 1 sin (t) /π . The other settings are the same as those in Section 4.1 . Numerical results are shown in Fig. 4 and

Table 3 . It is observed from Fig. 4 that trajectories of every joint angles synthesized by solution (17) always stay in the joint

angle limits. However, joint angles θ2 (t k +1 ) and θ5 (t k +1 ) synthesized by solution in [1] are sometimes beyond the time-

varying joint angle upper bound or lower bound. Table 3 presents MSSTE and ACTPU data when using solutions (12), (15),

(17) and solution in [1] with sampling gap δ = 0 . 1 , 0.05, 0.01, 0.005 and 0.001 s. Please refer to Section 4.1 for detailed

explanations. 

4.3. PUMA560 with joint angle limits 

In this subsection, a more realistic robotic system, i.e., PUMA560 robot manipulator, is investigated. It is a serial robot 

manipulator with 6 degree of freedom. The parameters of PUMA560 could be found in [37] , in which joint angle limits (The

units are angles) are listed as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−160 ≤ θ1 (t) ≤ 160 , 

−225 ≤ θ2 (t) ≤ 45 , 

−45 ≤ θ3 (t) ≤ 225 , 

−110 ≤ θ4 (t) ≤ 170 , 

−100 ≤ θ5 (t) ≤ 100 , 

−266 ≤ θ6 (t) ≤ 266 . 

The task is to track a desired path shown in Fig. 5 with joint angle limits conquered. Initial joint angle is θ (0) =
[0 ;−π/ 2 ; 0 ;π/ 2 ;π/ 2 ; −π/ 4] (rad). Task duration is 40 s. The actual trajectories generated by solution (17) are also shown

in Fig. 5 . It is observed from this figure that the initial position of end-effector is away from desired position. It successfully

tacks the desired path in a short time and then keeps the overlap with desired path. 
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Fig. 5. End-effector trajectories of PUMA560 robot system synthesized by solution (17) . The end-effector is in keeping with desired path all the while as 

the initial state of end-effector agrees with desired path. 

Fig. 6. Tracking errors of PUMA560 robot system defined synthesized by solution (12) , solution (15) , solution (17) , solution in [1] and solution in [30] with 

δ = 0 . 1 s, 0.01 s and 0.001 s. Solution (17) , solution in [1] and solution in [30] have similar tracking errors. Solutions (12) and (15) have relatively lower 

accuracy. 

Fig. 7. Joint angle trajectories of PUMA560 robot system synthesized by solution (12) , solution (15) , solution (17) , solution in [1] and solution in [30] with 

joint angle limits. Trajectories of every joint angles synthesized by solution (12) , solution (15) and solution (17) always stay in the joint angle limits. In 

contrast, some joint angles synthesized by solutions in [1] and [30] are sometimes beyond the joint angle upper bound or lower bound. 

 

 

 

 

 

 

 

To illustrate the superiority of solution (17) , solutions in [1] and [30] as well as solutions with traditional discretization

formulas (i.e., solutions (12) and (15) ) are investigated. Comparative results are shown in Figs. 6 , 7 and Table 4 . From Fig. 6 , it

can be observed that all solutions perform well without considering joint angle limits. Solutions (12) and (15) have relatively

lower accuracy compared with other solutions. Detailed results are shown in Table 4 , which shows MSSTE and ACTPU data

when using solutions (12), (15), (17) and solutions in [1] and [30] with sampling gap δ = 0 . 1 , 0.05, 0.01, 0.005 and 0.001 s.

Fig. 7 shows variation of all joint angle values during the control process, from which it can be observed that joint angle

values generated by solutions (12), (15) and (17) vary in the joint angle limits. In contrast, solutions in [1] and [30] fail
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Table 4 

MSSTE and ACTPU data when using solution (12) , solution (15) , solution (17) , solution in [1] and solution in [30] with different δ values for PUMA560 

robot manipulator system with joint angle limits as shown in Section 4.3 . 

δ

(ms) 

Solution (12) Solution (15) Solution in [1] Solution in [30] Solution (17) 

MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) 

100 6 . 77 × 10 −3 0.6006 8 . 87 × 10 −4 0.6344 9 . 38 × 10 −5 0.4583 9 . 04 × 10 −5 0.4575 4 . 08 × 10 −5 0.7035 

50 1 . 98 × 10 −3 0.6743 1 . 45 × 10 −4 0.5865 9 . 87 × 10 −6 0.3621 9 . 53 × 10 −6 0.4155 4 . 48 × 10 −6 0.6692 

10 8 . 43 × 10 −5 0.5826 1 . 31 × 10 −6 0.5827 2 . 81 × 10 −8 0.3766 2 . 72 × 10 −8 0.4119 1 . 48 × 10 −8 0.6713 

5 2 . 11 × 10 −5 0.5780 1 . 64 × 10 −7 0.5959 1 . 87 × 10 −9 0.3630 1 . 80 × 10 −9 0.3886 9 . 95 × 10 −10 0.6474 

1 8 . 45 × 10 −7 0.5769 1 . 32 × 10 −9 0.5763 3 . 07 × 10 −12 0.3637 2 . 96 × 10 −12 0.3920 1 . 64 × 10 −12 0.6238 

 

 

 

 

 

 

 

 

 

 

 

 

 

to conquer joint angle limits. In a word, solution (17) has high accuracy and has the ability to conquer joint angle limits

simultaneously while the other solutions do not. 

5. Conclusion 

To solve the problem that requirements of real time, high precision and conquering joint angle limits cannot be satisfied 

simultaneously for conventional methods, the control of robot manipulator system is directly formulated as multilayered 

time-varying problem (5) including equalities and inequalities, in which equalities formulate tacking task and inequalities 

formulate joint angle limits. This new scheme to formulate robot manipulator control makes the corresponding proposed 

solution (17) more practical in real-word. As illustrated, future joint angle values θ (t k +1 ) could be obtained before time t k +1 

comes, and average computing time per updating of solution (17) is less than 1 ms. The precision could reach 10 −13 when

sampling gap δ = 1 ms, which is less than average computing time per updating. Besides, all joint angle limits could be

conquered. The weakness of this work is that the dynamics of robot system is not considered, which could be our future

research direction. 
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Appendix A 

Based on zeroing neural dynamics method [32] , to solve f (θ (t)) − r d (t) = 0 , a vector-form time-varying error is defined

as 

e (t) = f (θ (t)) − r d (t) . (A.1) 

Then, using linear design formula of zeroing neural dynamics i.e., ˙ e (t) = −λe (t) , to zero out error function (A.1) [1] . Finally,

the following equation is obtained as 

J(θ (t)) ˙ θ(t) = 

˙ r d (t) − λ(f (θ (t)) − r d (t)) . (A.2) 

Due to the utilization of linear design formula ˙ e (t) = −λe (t) , every element of e (t) exponentially converges to zero if the

parameter λ > 0 and t → + ∞ . Thus, if the parameter λ > 0 and t → + ∞ , then the first layer of (5) , i.e., f (θ (t)) − r d (t) = 0 ,

is equivalent to (A.2) . The proof is completed. �

Appendix B 

We define a vector γ . 2 (t) ∈ R 

n as [ γ 2 
1 
(t) , γ 2 

2 
(t) , ..., γ 2 

n (t)] T . As each elements of γ . 2 (t) are non-negative, the inequality

θ (t) − θ+ (t) ≤ 0 is equivalent to 

θ (t) − θ+ (t) + γ . 2 (t) = 0 . (B.1) 

To solve (B.1) , based on zeroing neural dynamics method [32] , an error function is defined as 

e (t) = θ (t) − θ+ (t) + γ . 2 (t) . (B.2) 

Then, to zero out error function (B.2) , linear design formula of zeroing neural dynamics, i.e., ˙ e (t) = −λe (t) is utilized [1] ,

and Eq. (7) is obtained. Thus, if the parameter λ > 0 and t → + ∞ , then the second layer of (5) , i.e., θ (t) − θ+ (t) ≤ 0 , is

equivalent to (7) . The proof is completed. �
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