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When kinematic control of robot manipulator is modeled as time-varying problems, con-
trol algorithms generated by solving time-varying problems perform well in the aspect
of real-time control and control precision. However, conventional algorithms are based
on relatively simple time-varying problems modeling and solving, and thus, it is difficult
for them to solve more other problems while completing tracking task. In this work, the
kinematic control of robot manipulator is first modeled as more complicated multilayered
time-varying problem, which simultaneously formulates the tracking task and joint angle
limits. Then, zeroing neural dynamics method is future investigated to find the equiva-
lence of multilayers. Finally, three explicit solutions based on three discretization formulas
are presented to solve the multilayered time-varying problem. The presented solutions not

Discretization formula only complete the tracking task in real time with different precision, but also solve the

problem of joint angle limits during the control process.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Real-time tracking control of robot manipulator is a fundamental topic in robotics, which has been investigated by nu-
merous researchers [1,2]. The problem of joint angle limits must be considered during the control process. If not, the track-
ing task could not be completed and the hardware of robot manipulator could damage [3,4]. The kinematic tracking control
problem is formulated as to find a joint angle trajectory 6 (t) such that f(6(t)) =r4(t) is satisfied for a given desired path
in the task space ry(t) [5]. Classical methods include inverse Jacobi method [6], sliding mode method [7,8], Newton-based
method [9] and optimal control [10] to solve this problem. For example, in [8], a suboptimal sliding mode control method
was derived from combination of the sliding mode control and the state-dependent Riccati equation technique, applied for
nonlinear robot systems. One of the distinguished features of this control method in [8] is its robustness towards uncertainty.
However, these methods use the direct kinematic mappings for robot manipulators in a static/time-invariant perspective, i.e.,
f(0) =r and J(0)0 =r, where J(0) is the Jacobi matrix of robot manipulator. Most of them often implicitly assume that the
start robot joint angle corresponds to the initial desired position of end-effector, which is not satisfied in practice generally
[9]. Besides, the time-invariant modeling leads to lagging control and effects the real-time [11].
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Table 1
Detailed differences between previous works and
the present study.

Paper A B C D

[3,4] Monolayer No Yes  Yes
[25,26] Multilayers No No Yes
[27-31] Multilayers  Yes  Yes No

This paper  Multilayers Yes Yes  Yes

A: Multilayers vs monolayer. B: Calculate joint angle
predictively. C: Start with random joint angles. D:
Consider all joint angle limits including upper and
lower bounds.

Increasing researchers pay attention to the investigation of time-varying problems recent years and various kinds of
time-varying problems have been investigated and solved [12,13]. Jin et al. [14] solved time-varying matrix inversion from
a control-theoretical perspective. Zhang et al. [15] presented an integral recurrent neural network to solve time-varying
Sylvester equation. Li et al. [16] presented a variable-gain finite-time convergent recurrent neural network to solve time-
varying quadratic programming with unknown noises endured. Wei et al. [17] presented a noise-tolerant neural algorithm
to solve time-varying nonlinear optimization with estimation on Hessian matrix inversion.

With the development of time-varying problems solving, researchers rethink the problem of robot manipulator tracking
control and study it in a time-varying perspective [18]. The main idea of this method is modeling the tracking control
problem as time-varying problems, and then solving the tracking control problem via solving the time-varying problems
[19]. A biological-heuristic optimization model based on time-varying perspective was developed to control active sensing
of robot arms in [20]. Robots’ kinematic control was modeled as time-varying nonlinear equations and solved by utilizing a
noise-tolerant zeroing dynamics design formula in [21]. Repetitive motion planning of robotic manipulators was solved in a
time-varying perspective with guaranteed precision in [22]. The solution of time-varying generalized Sylvester equation was
employed to robot manipulator control in [23]. A complex-valued discrete-time neural dynamics model for solving perturbed
time-dependent complex quadratic programming was applied to robot manipulator control in [24].

The above mentioned studies of robot manipulator control based on time-varying problems solving have advantages on
real-time computation and control precision. However, these studies formulate the complicated robot tracking control prob-
lems as relatively simple-layered time-varying problems, such as linear equations system, matrix inversion problem and
quadratic programming. Recently, multilayered time-varying problems are investigated and applied to the robot manipu-
lator control. For example, time-varying linear equation and inequality systems were investigated in [25], and perturbed
multilayered linear systems were studied in [26]. They are employed to the robot manipulator control with all joint angle
limits considered including upper and lower bounds. However, the presented solutions are continuous-time, which are im-
plemented by ode solvers. Thus, the presented solutions do not calculate joint angle predictively, which leads to relatively
weak real-time performance. Besides, the presented solutions assume the initial joint angle corresponds to initial desired
path, which is hard to be satisfied in reality. Discrete-time solutions were presented to solve multilayered time-varying
equalities and inequalities, and further control planar robot manipulator and mobile robot in [27,28]. Multilayered time-
varying linear and nonlinear equations were investigated and applied to robot manipulator with partial joint angle limits
conquered in [29]. The robot manipulator control was formulated as multilayered linear equations and nonlinear equations
respectively in [30] and [31]. The performances of presented solutions and the proposed solution in this paper are listed
and compared in Table 1.

In this work, the robot manipulator tracking control is firstly directly formulated as multilayered time-varying prob-
lem with all joint angle limits including upper and lower bounds considered. Then, the multilayered time-varying problem
is equivalently converted into a relatively easily solved equation on the basis of zeroing neural dynamics method, and a
continuous-time solution is developed. Finally, explicit solutions is proposed based on different discretization formulas and
the continuous-time solution.

The remainder of this paper is organized into four sections. Section 2 formulates the robot manipulator control as multi-
layered time-varying problem. Section 3 solves this problem via zeroing neural dynamics method and discretization formu-
las. Section 4 presents some numerical experimental results to verify the effectiveness and superiority of proposed solution.
Section 5 concludes this paper with final remarks. Before ending this section, the main contributions of this paper are listed
in the following facts.

(1) Robot manipulator tracking control is directly formulated as multilayered time-varying problem with all joint angle limits
considered including time-varying upper and lower bounds. Note that the constant bounds are special cases of time-
varying bounds, which are investigated simultaneously.

(2) Three explicit four-step solutions are proposed to solve the multilayered time-varying problem based on the continuous-
time solution and three discretization formulas. Note that the continuous-time solution is based on the study of zeroing
neural dynamics method.
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2. Multilayered time-varying modeling

From a time-varying perspective, the kinematic equation of robot manipulator [1] is formulated as

£(0(6)) =ra(t). (1)

where 6 (t) € R" is the joint angle vector; ra(t) € R™ is the actual trajectory of end-effector; and f(-) is the map between the
joint angle and the actual trajectory of end-effector. The inverse kinematic control of robot manipulator is to find a feasible
solution O (t) so that the actual trajectory of end-effector tracks the time-varying desired path quickly, i.e., ra(t) — ry(t),
where ry(t) is the time-varying desired path. It is formulated as the following time-varying equation

ra(t) —rq(t) =0.
Furthermore, based on the kinematic Eq. (1), we have the first layer equation to be solved as below:
£(6(t)) —rq(t) = 0. (2)

Joint angle limits of robot manipulator are the range of joint angle during the control process, which is dynamically
formulated as

07 () =0(t) <07 (1), (3)

where 6~ (t) and 6% (t) are time-varying upper and lower bounds of the controlled variable 8 (t). (3) can be reformulated
as the second and third time-varying layers as below:
6(t) —0+(t) <0, (4)
—0(t)+6-(t) <0,
where 6(t) — 6+ (t) <0 means each elements of vector 8(t) — 0*(t) are less than or equal to 0. Combining the first, second
and third layers yields the following multilayered time-varying equation

f(0(t)) —rq(t) =0,
O(t) —0+(t) <0, (5)
—0(t)+6-(t) <0,
which simultaneously formulates the time-varying tracking task and joint angle limits constraints.
The superiority of the model (5) to formula the robot manipulator control is shown compared with the presented models

in [1,30] (i.e., model (9) in [1] and model (1)-(2) in [30]). Firstly, [1] formulas the robot manipulator control as single layered
time-varying nonlinear equation as follows:

ra(t) —rq(t) =0,
ie.,
f(O(t)) —rg(t) =0.

That equation only considers the tracking task, and thus the corresponding solution could not complete other task. Fur-
thermore, [30] models the robot manipulator control as multilayered time-varying linear system, which is formulated as
follows:

{A(t)Q(t) =h(t).
JO©)0(t) = ta(t) = L(EO () - ra(D)).

The second equality formulas the tacking task and the first equality could be constructed as needed to complete other
task. However, that work only investigates equalities instead of inequalities, which is difficult to formulate joint angle limits.
Specifically, please see Example 3 of [30], by constructing the matrix A(t) as [sin(0.5t) + 2, 0, 0], and the vector b(t) as /2,
only the first joint angle conquers the joint limits instead of all joint angle limits (When all joint angle limits are considered
by equalities, the basic tracking task could not be formulated because of overdetermination), which is less practical in re-
ality. In contrast, this work models the robot manipulator control as multilayered equality and inequality equations, which
formulate the tracking task by equality and formulates all joint angle limits by inequalities. Thus, the corresponding solution
proposed in this work to solve (5) could simultaneously solve the problem of tracking time-varying desired path and the
problem of all joint angle limits.

3. Zeroing neural dynamics solving and time discretization
In this section, multilayered time-varying Eq. (5) is solved based on zeroing neural dynamics and a discretization formula.
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3.1. Equivalency analyses and continuous-time solution

The three layers of multilayered time-varying Eq. (5) have to be equivalently converted into other forms so that they can
be unified and solved together. Equivalency analyses based on zeroing neural dynamics [32] are presented by the following
lemmas, corollary and theorems.

Lemma 1. If the parameter A > 0 and t — +oo, then the first layer of (5), i.e., f(6(t)) —rq(t) = 0, is equivalent to

JO@)O (1) = iq(t) — AEB () — r4(D)). (6)
where J(6(t)) is the Jacobi matrix of the robot manipulator and t4(t) is the time derivative of desired path.
Proof. The proof process is given in Appendix A. O

Lemma 2. Define a vector y (t) € R" as [y (t), y2(t), ... ya(D)]', and a vector y-2(t) e R" as [y2(t), Y2 (). ... v O]V If the
parameter A > 0 and t — +oo, then the second layer of (5), i.e, O(t) — 07 (t) <0, is equivalent to

[12A(0)] [;9/((?)} =6+(t) = A(6(t) -0 (1) + (1)) )
where [ € R™" is the identity matrix; and A(t) is denoted as below:
ne o0 - 0
0 y»(@® - 0
A(t) =
0 0 - 7m®

Proof. The proof process is given in Appendix B. O

Corollary 1. Define a vector n(t) € R* as [11(t), n2(t), ..., na(t)]", and a vector n2(t) e R" as [2(t), n3(t), ..., n2(O]". If the
parameter A > 0 and t — +oo, then the third layer of (5), i.e, —0(t) +6~(t) <0, is equivalent to

[-12r®] [ig] = -0 - A(n*® - 0(0) +6-(©)) (8)
where I'(t) is denoted as below:
mo 0 .0
0 ma(t) - 0
') =
0 0 <o (t)

Based on the above lemmas and corollary, we have the following theorem to convert the multilayered time-varying
Eqg. (5) into a more solvable equation.

Theorem 1. If the parameter A > 0 and t — +oo, then multilayered time-varying Eq. (5) is equivalent to
W (y(t)y(t) = d(t), 9)
where y(t) = [07(6), yT(t), n" (O],
J(6(t)) 0 0
W(y(@)) = I 2A(t) 0 (10)
-1 0 2I0°(¢t)
and
fq(t) — A (O (1)) —ra(0))
d@t)y = | 07 —1(0©) -0+ () + y2(1))
—0-(t) = A(n2(t) —0.(t) + 6~ (1))
Proof. Based on Lemma 1, Lemma 2 and Corollary 1, if the parameter A > 0 and t — +oo, then the first, second and third
layer of multilayered time-varying Eq. (5) is equivalently converted into Egs. (6), (7) and (8), respectively. Combining (6),

(7) and (8) yields (9), and thus, if the parameter A > 0 and t — +oco, then multilayered time-varying Eq. (5) is equivalent to
(9). O
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Based on the equivalency between (5) and (9), the continuous-time solution is obtained to solve multilayered time-
varying Eq. (5) as below:

y(&) =W (y(£)d(t), (11)
where * denotes pseudo-inverse operation. It is an equation of explicit neural dynamics. We assume that matrix W (y(t)) is

always non-singular.

Remark 1. continuous-time solution (11) is based on the three equivalent equations in Lemma 1, Lemma 2 and Corollary 1.
In terms of tracking task, the first layer of (5), i.e.,, f(6(t)) —rq(t) = 0, is equivalent to (6). This equivalence is based on linear
design formula of zeroing neural dynamics i.e., @(t) = —Ae(t) [1]. This design formula makes the equivalent Eq. (6) globally
exponentially convergent. Thus, continuous-time solution (11) makes the actual trajectory ra(t) converge to desired path
ry(t) globally and exponentially.

3.2. Solutions and theoretical analyses

Based on previous work [1], the continuous-time solution should be discretized by effective one-step-ahead discretization
formulas, so that the corresponding solutions could calculate the control variable in predictive way, and then satisfy the
requirement of real-time computation.

In this work, we utilize three one-step-ahead discretization formulas. Euler formula [33] is the first effective discretization
formula, which is shown as

X(tiy1) — x(6)
1)

Xk(t) = +O(8),

where § is the time sampling gap. Utilizing Euler formula to discretize continuous-time solution (11) generates an explicit
one-step solution as below:

V(tip1) =y (&) + 58y (t). t). (12)

where

gy (). t) = W (y(6)d (). (13)
Formula in [34] is shown as
2x(ti1) — 3X(t) + 2x (1) — x(tr_2)

. _ 2

x(t,) = 28 +0(6%). (14)
Utilizing formula (14) to discretize continuous-time solution (11) generates the following explicit three-step solution:

3 1

V(i) = 5Y(t) = Y(ti1) + 5V (6e2) + I8V (5. ). (15)
Another formula, which is obtained by Taylor expansion, is presented as

. 50 7 11 67 13 3

x(ty) = mx(tkﬂ) + mx(tk) - ﬂx(tkq) - mx(tkfz) + mx(tkfs) +0(8°). (16)

Utilizing formula (16) to discretize continuous-time solution (11) generates an explicit four-step solution as below:

7 33 67 13 111
V(1) = —Wy(tk) + %Y(tk—l) + myak—z) - %y(tk_g) + 55g(y(tk), ty). (17)

Solution (17) is relatively universal, which can be implemented in any robot manipulator system when kinematic pa-
rameters are known. Based on the above process, multilayered time-varying problem including equalities and inequalities
could be solved by using solution (17). Real-time implementation of explicit four-step solution (17) is shown in Algorithm.
Besides, solution (17) has advantages in the aspect of real-time computation, convergence and joint angle limits conquering.
The corresponding discussions are presented as below:

(1) Solution (17) satisfies the requirement of real-time computation via predicting future-instant solution. Specifically, so-
lution (17) uses information at t, e.g., W(y(t)), El(tk), and information before t;, e.g., y(t,_1), ¥(t,_»), to predictively
calculate future control variable (t, ), which is exactly the first n elements of y(t;,). In this way, the inevitable time
consuming of solution computation does not lead to the lag of tracking control.

(2) For solution (17), initial position of end-effector could be away from desired position, and then it quickly tacks the
desired path.

(3) Solution (17) solves the problem of joint angle limits, not just completes the basic tracking task. Solution (17) is to solve
multilayered time-varying problem (5), which models both the tracking problem and the joint angle limits via three
layers, and thus, solution (17) could simultaneously solve the problem of tracking time-varying desired path and the
problem of joint angle limits.
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Algorithm Real-time implementation of explicit four-step solution (17)

1. Initialize: Arbitrarily set 6(tg), ¥ (tg), n(ty). Set sampling gap t, parameter « and task duration t;. Updating index k = 0.
2. While(t;, < t3)

3. Get current data at time t;, including 6+ (t), 6~ (t;), 9+(tk), 9‘(tk), rq(t;) and rq(ty)-

4. Calculate matrix W (y(t,) by (10); Calculate vector d(t,) by (13).

5. Predict future value y(t;,;), which contains 6 (t, 1), ¥ (t,1) and n(t;,1), by solution (12).
6. Convert the joint angle value (t,,) to control signal and control the robot manipulator.
7. When time t; ., comes, index k=k+ 1.

8. WhIIE(tk =< tf) .

9. Get current data at time ¢, including 6+ (t,), 0~ (&), 67 (), 0~ (&), Ta(t,) and iq(ty).

10. If derivative data (0 (ty), 0~ (t;) and 1y4(t)) are unknown

11. Calculate derivative data approximately by (18).

12. Calculate matrix W (y(t,) by (10); Calculate vector El(tk) by (13).

13. Predict future y(t,, 1) by solution (17).

14. Convert the joint angle value 6(t;, ) to control signal and control the robot manipulator.
15. When time t,,; comes, index k=k+ 1.

16.~End

Remark 2. To complement explicit four-step solution (17), the values of 14(t), 9*(tk) and 9'*(tk) is necessary, which are
unknown usually. Backward finite difference formula is employed to approximate these first-order derivatives because future
information 6 (t;,;) is unknown. To make sure the precision and simplicity, the truncation error of backward finite difference
formula should be equal to that of our discretization formula (16). Thus, these first-order derivatives in solution (17) can be
approximated by the following backward formula [33]:

i(6) = () — JU(Ey) + osu(ts) — gt s) + 05, (18)

Theoretical analyses on O-stability, consistency and convergence, which are based on four results in Appendix of [1] for
an N-step method [35], are presented.

Theorem 2. With 0(8%) denoting a vector and every element being 0(8*), explicit four-step solution (17) is 0-stable, consistent
and convergent, which converges with the truncation error of order O(8*). Besides, explicit one-step solution (12) and explicit
three-step solution (15) are also 0-stable, consistent and convergent, which converge with the truncation errors of order 0(82)
and 0(83), respectively.

Proof. The first characteristic polynomial of explicit four-step solution (17) is
17 5 33 , 67 13
Py(¢) =¢*+ == 1005 " 50° ~100S T30
of which the roots are

s1=1,

¢, = 0.3102,

¢3 = —0.6901 + 0.60164i,
¢4 = —0.6901 — 0.6016i.

The four roots satisfy the O-stability condition, and thus, solution (17) is O-stable. The second characteristic polynomial of
explicit four-step solution (17) is o (¢) = 111/50¢3. Let us observe that P;(1) = 0 and Py(1) = o (1) # 0. Thus, solution (17) is
consistent based on the result on page 338 of [33]. Furthermore, discretization formula (16) can be rewritten as

1116

X(fiar) = T3 46 — 05X (0) + X (6y) + PEX(Ey) — gox(t ) + O(5%). (19)

67
100 100
Thus, solution (17) generated by formula (16) has an truncation error of 0(84). Finally, according to Dahlquist equivalence
theorem on page 340 of [33], solution (17) is convergent, which converges with the truncation error of order 0(§4). In terms
of one-step solution (12) and three-step solution (15), the O-stability and consistency are guaranteed by similar analyses
with above. Their truncation errors are 0(§2) and 0(83), respectively. Thus, solution (12) and solution (15) are also 0-stable,
consistent and convergent, which converge with the truncation errors of order 0(82) and 0(83), respectively. [

4. Numerical experiments and verification

In this section, some comparative numerical experimental results are presented. For comparisons, conventional solution
in formula (17) of [1] and solution in formula (22) of [30] are shown, which are based on the models shown in Section 2.
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5 46 . .
— Actual trajectory

a4l ] 4.4} ——~Desired path

4.2t Y (m) 1
3k 1 al ,
ol ] 3.8f 1

3.6f 1
1 L 4

3.4¢ 1
0 3 ! - ‘ s
-1 3 '%.6 1.8 2 22 24 26

(a) Robot trajectories

(b) End-effector trajectories

Fig. 1. Robot trajectories and end-effector trajectories of planar robot system synthesized by solution (17). The end-effector from a relatively arbitrary
initial position quickly tracks the desired path.

Table 2

Maximal steady-state tracking error (MSSTE) defined as limy_, ,, sup ||ra(t, 1) — ra(te,1) || and average computing time per updating
(ACTPU) data when using solution (12), solution (15), solution (17) and solution in [1] with different § values for planar robot manip-

ulator system with constant joint angle limits as shown in Section 4.1.

§ Solution (12) Solution (15) Solution in [1] Solution (17)

ms

(ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms)  MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms)
100 5.05x103  0.3594 3.69 x 1074 0.3681 5.93 x 1076 0.1394 6.45 x 106 0.5184

50 136 x 1073 03473 5.04 x 10° 0.3482 4.42 x 1077 0.1376 4.40 x 1077 0.5410

10 5.66 x 107> 0.3335 417 x 1077 0.3609 8.86x 1071  0.1310 9.16 x 1071 0.4082

5 142 x 10  0.3364 522 x 1077 0.3369 5.60 x 10~ 0.1332 5.82 x 101 0.3841

1 5.69 x 107 0.3255 417 x 1071 0.3243 9.49 x 10~  0.1333 9.74 x 10°*  0.3886

Specifically, the conventional solution in formula (17) of [1] is
9 .
0 (trs1) = Zlﬁ (0 (t,)) (O (tr) — k¢ (£ (1)) — 1a(8)))

1 3 5 1
- ge(tk) + Zg(tk—]) + §9(tk,2) - Ze(fks)-

The solution in formula (22) of [30] is

16 4 6 4 5
0 (ter1) = 7F+(fk)13(fk) - ﬁe(tk) + 79(%71) + 79(%72) - ﬁe(fks%

where
A(ty)
F =
(t) [J(m}
and
pty) = —8 (A0 () — b(te)) — k (A0 (t) — b))
‘ 84 (1) + K (g () — £(6.6))) '

4.1. Planar robot manipulator with constant joint angle limits

(20)

(21)

Some numerical experiments are conducted in a system of six-link planar robot manipulator. Its kinematic mapping and
Jacobi matrix could be found and derived by D-H method [36]. Solution (17) is employed to control the tracking process.
Each link of the planar robot manipulator is 1 m; initial joint angle is 8 (ty) = [37 /4, -7 /2, -7 /4,7 /6, /3, —7 /6] rad;
the joint angle limits are [0 (ty) — 7 /15,0(ty) + 7 /9] rad; task duration is 20 s; sampling gap 6 = 0.01 s. The task is to
track a desired path shown in Fig. 1, which has bounded fourth-order derivative. This setting guarantees the effectiveness
of discretization formula and corresponding proposed solution. In the on-line control process, the inputs are current data at
time t;, including 6+ (t), 0~ (t;), 07 (t;), 6~ (), rq(ty) and 14(t), in which derivative data (6 (t,), 6~ (t,) and £4(t;)) are
optional. The output is future value 6(t, ), which could be converted as control signal to control the robot manipulator.

Numerical results are shown in Figs. 1 2 and Table 2.
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1 1. -0.1
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- 1 =2 ~
R S k____:a*"g Lower bound 0.8
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Fig. 2. Joint angle trajectories of planar robot system synthesized by solution in [1] and solution (17) with constant joint angle limits. Trajectories of every
joint angles synthesized by solution (17) always stay in the joint angle limits. In contrast, joint angles 6, (t,.;) and 6s(t;,;) synthesized by solution in
[1] are sometimes beyond the joint angle upper bound or lower bound.
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Fig. 3. Tracking errors of planar robot with constant joint angle limits defined as e(ty,;) = [|[Fa(t 1) — Fq(tey1)|l synthesized by solution (12), solution
(15) and solution (17) with § =0.1 s, § =0.01 s and § = 0.001 s. When sampling gap § reduces by a tenth, tracking errors of solutions (12), (15) and
(17) reduce by 102, 10-3 and 10~4, respectively.

Fig. 1 (a) shows the trajectories of robot manipulator and Fig. 1(b) shows the actual trajectories of end-effector as well
as the time-varying desired path. It can be observed that initial position of end-effector is away from desired position, and
then it quickly tacks the desired path, which means that solution (17) successfully completes the tracking task.

Furthermore, Fig. 2 shows the trajectories of every joint angles as well as the constant upper and lower bounds. For
comparisons, conventional solution in [1] is also employed. It is observed that trajectories of every joint angles synthesized
by solution (17) always stay in the joint angle limits. However, as shown in Fig. 2(b) and (e), joint angles 6,(t,,{) and
05 (tyy1) synthesized by solution in [1] are sometimes beyond the joint angle upper bound or lower bound. Therefore, it is
verified that solution (17) successfully solves the problem of joint angle limits, while the solution in [1] fails to do it, which
shows the superiority of solution (17).

Some numerical experiments are implemented to verify the control precision of solution (17). For comparisons, solu-
tion (12), solution (15) and solution (17) are employed simultaneously. Tracking error is defined as e(ty, 1) = |[ra(ty ) —
rq(ti, 1) |l. Numerical results are shown in Fig. 3. It is observed that tracking errors synthesized by solution (17) are of order
10-%, 10~ and 10~ with sampling gap § = 0.1 s, 0.01 s and 0.001 s, respectively, which substantiates that the control
precision of solution (17) is 84. However, tracking errors synthesized by solution (12) are of order 10-3, 10—> and 10~7 with
sampling gap 8 = 0.1 s, 0.01 s and 0.001 s, respectively. Tracking errors synthesized by solution (15) are of order 104, 107
and 10~ with sampling gap § = 0.1 s, 0.01 s and 0.001 s, respectively. The superiority of solution (17) in terms of control
precision compared to solutions (12) and (15) is thus substantiated.

More numerical experimental results are shown in Table 2, which presents maximal steady-state tracking error (MSSTE)
defined as limy_, |, sup ||ra(ty, 1) — rq(txy1)]l and average computing time per updating (ACTPU) data when using solution
(12), solution (15), solution (17) and solution in [1] for planar robot manipulator system with constant joint angle limits.
Different situations with sampling gap 6 = 0.1, 0.05, 0.01, 0.005 and 0.001 s are considered. It is observed that their ACTPU
data in different situations are smaller than 0.6 ms, which means that the control process is real time even when sampling
gap § is up to 0.6 ms. ACTPU data of solutions (12), (15) and (17) are smaller than those of solution in [1] because of
relatively complicated structure. Besides, their MSSTE data are consistent with the results in Fig. 3.
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Fig. 4. Joint angle of planar robot trajectories synthesized by solution in [1] and solution (17) with time-varying joint angle limits. Trajectories of every
joint angles synthesized by solution (17) always stay in the joint angle limits. In contrast, some joint angles synthesized by solution in [1] are sometimes
beyond the joint angle upper bound or lower bound.

Table 3

MSSTE and ACTPU data when using solution (12), solution (15), solution (17) and solution in [1] with different § values for planar
robot manipulator system with time-varying joint angle limits as shown in Section 4.2.

§ Solution (12) Solution (15) Solution in [1] Solution (17)

ms

(ms) MSSTE (m) ACTPU (ms)  MSSTE (m) ACTPU (ms)  MSSTE (m) ACTPU (ms)  MSSTE (m) ACTPU (ms)
100 5.04x103  0.3953 3.51 x 1074 0.3894 5.93 x 1076 0.1585 6.89 x 106 0.5690

50 1.36x 1073  0.3756 4.94 x 107> 0.4176 4.42 x 1077 0.1401 4.71 x 1077 0.5337

10 5.61 x 107> 0.3576 4.78 x 107 0.3609 8.86x 1071  0.1287 826 x 10710  0.4843

5 1.41 x 10-® 0.3682 5.23 x 1077 0.3626 1.56 x 10-1 0.1567 5.18 x 10~ 0.4411

1 5.63 x 1077 0.3680 419 x 107 0.3809 9.49 x 107 0.1434 897 x 107"  0.4265

4.2. Planar robot manipulator with time-varying joint angle limits

Some numerical experiments are also conducted for six-link planar robot manipulator system with time-varying joint
angle limits. The time-varying lower bound is 0 (ty) — 7 /12 + 0.25cos(t)/m and the time-varying upper bound is 6 (ty) +
/124 0.1sin(t)/m. The other settings are the same as those in Section 4.1. Numerical results are shown in Fig. 4 and
Table 3. It is observed from Fig. 4 that trajectories of every joint angles synthesized by solution (17) always stay in the joint
angle limits. However, joint angles 6,(t;,.1) and 6s(t; 1) synthesized by solution in [1] are sometimes beyond the time-
varying joint angle upper bound or lower bound. Table 3 presents MSSTE and ACTPU data when using solutions (12), (15),
(17) and solution in [1] with sampling gap § = 0.1, 0.05, 0.01, 0.005 and 0.001 s. Please refer to Section 4.1 for detailed
explanations.

4.3. PUMA560 with joint angle limits

In this subsection, a more realistic robotic system, i.e., PUMA560 robot manipulator, is investigated. It is a serial robot
manipulator with 6 degree of freedom. The parameters of PUMA560 could be found in [37], in which joint angle limits (The
units are angles) are listed as
—160 < 6¢(t) < 160,

—225 < 6,(t) <45,

—45 < 03(t) < 225,

—110 < 64(t) < 170,

—100 < 65(t) < 100,

—266 < G6(t) < 266.

The task is to track a desired path shown in Fig. 5 with joint angle limits conquered. Initial joint angle is 6(0) =
[0; = /2;0; w/2; w/2; —m /4] (rad). Task duration is 40 s. The actual trajectories generated by solution (17) are also shown

in Fig. 5. It is observed from this figure that the initial position of end-effector is away from desired position. It successfully
tacks the desired path in a short time and then keeps the overlap with desired path.

A
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Fig. 5. End-effector trajectories of PUMA560 robot system synthesized by solution (17). The end-effector is in keeping with desired path all the while as

the initial state of end-effector agrees with desired path.
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Fig. 7. Joint angle trajectories of PUMA560 robot system synthesized by solution (12), solution (15), solution (17), solution in [1] and solution in [30] with
joint angle limits. Trajectories of every joint angles synthesized by solution (12), solution (15) and solution (17) always stay in the joint angle limits. In
contrast, some joint angles synthesized by solutions in [1] and [30] are sometimes beyond the joint angle upper bound or lower bound.

To illustrate the superiority of solution (17), solutions in [1] and [30] as well as solutions with traditional discretization
formulas (i.e., solutions (12) and (15)) are investigated. Comparative results are shown in Figs. 6, 7 and Table 4. From Fig. 6, it
can be observed that all solutions perform well without considering joint angle limits. Solutions (12) and (15) have relatively
lower accuracy compared with other solutions. Detailed results are shown in Table 4, which shows MSSTE and ACTPU data
when using solutions (12), (15), (17) and solutions in [1] and [30] with sampling gap § = 0.1, 0.05, 0.01, 0.005 and 0.001 s.
Fig. 7 shows variation of all joint angle values during the control process, from which it can be observed that joint angle
values generated by solutions (12), (15) and (17) vary in the joint angle limits. In contrast, solutions in [1] and [30] fail
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Table 4
MSSTE and ACTPU data when using solution (12), solution (15), solution (17), solution in [1] and solution in [30]| with different § values for PUMA560
robot manipulator system with joint angle limits as shown in Section 4.3.

§ Solution (12) Solution (15) Solution in [1] Solution in [30] Solution (17)

ms

(ms) MSSTE (m) ACTPU (ms) MSSTE (m) ACTPU (ms) MSSTE (m)  ACTPU (ms) MSSTE (m)  ACTPU (ms) MSSTE (m)  ACTPU (ms)
100 6.77 x 10~ 0.6006 8.87 x 1074  0.6344 938 x 10  0.4583 9.04 x 107>  0.4575 4.08 x 10> 0.7035

50 198 x 1073 0.6743 1.45x 10" 0.5865 9.87x 1076 03621 9.53x 106 04155 448 x 107 0.6692

10 843 x10° 0.5826 1.31x10°% 0.5827 2.81x10°%  0.3766 2.72x10°% 04119 148 x 108 0.6713

5 2.11x 1075  0.5780 1.64 x 107 0.5959 1.87 x10°  0.3630 1.80 x 10 0.3886 9.95x 1071 0.6474

1 8.45x 1077 0.5769 1.32x10° 05763 3.07x 1072 0.3637 2.96 x 1072 0.3920 1.64x 1072 0.6238

to conquer joint angle limits. In a word, solution (17) has high accuracy and has the ability to conquer joint angle limits
simultaneously while the other solutions do not.

5. Conclusion

To solve the problem that requirements of real time, high precision and conquering joint angle limits cannot be satisfied
simultaneously for conventional methods, the control of robot manipulator system is directly formulated as multilayered
time-varying problem (5) including equalities and inequalities, in which equalities formulate tacking task and inequalities
formulate joint angle limits. This new scheme to formulate robot manipulator control makes the corresponding proposed
solution (17) more practical in real-word. As illustrated, future joint angle values 6(t, ;) could be obtained before time t; 4
comes, and average computing time per updating of solution (17) is less than 1 ms. The precision could reach 10~13 when
sampling gap § =1 ms, which is less than average computing time per updating. Besides, all joint angle limits could be
conquered. The weakness of this work is that the dynamics of robot system is not considered, which could be our future
research direction.
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Appendix A

Based on zeroing neural dynamics method [32], to solve f(6(t)) —rq(t) = 0, a vector-form time-varying error is defined
as

e(t) =f(O(t)) —rq(t). (A1)

Then, using linear design formula of zeroing neural dynamics i.e., é(t) = —Ae(t), to zero out error function (A.1) [1]. Finally,
the following equation is obtained as

JO©)0(t) = ta(t) = L(EO () - ra(D)). (A2)

Due to the utilization of linear design formula é(t) = —Ae(t), every element of e(t) exponentially converges to zero if the
parameter A > 0 and t — +oo. Thus, if the parameter A > 0 and t — +oo, then the first layer of (5), i.e., f(8(t)) —ry(t) =0,
is equivalent to (A.2). The proof is completed. O

Appendix B

We define a vector y-2(t) € R" as [y2(t), Y2 (t), ... ¥2(t)]". As each elements of y-2(t) are non-negative, the inequality
6 (t) —0*(t) <0 is equivalent to

6(t) 07 (t) +y2(t)=0. (B.1)
To solve (B.1), based on zeroing neural dynamics method [32], an error function is defined as
e(t) =0(t) — 0+ () +y2(t). (B.2)

Then, to zero out error function (B.2), linear design formula of zeroing neural dynamics, i.e., €(t) = —Ae(t) is utilized [1],
and Eq. (7) is obtained. Thus, if the parameter A > 0 and t — +oo, then the second layer of (5), i.e,, 8(t) — 6+ (t) <0, is
equivalent to (7). The proof is completed. O
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