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a b s t r a c t

Spatial filtering provides an efficient method for single-trial EEG classification and has been widely used
in EEG-based brain computer interfaces. However, scalp-recorded EEG signals are usually very noisy since
they could be contaminated by various outliers, such as EOG or EMG artifacts. The outliers may seriously
distort the performance of spatial filters. To solve this problem, we propose a new robust spatial filtering
vailable online 14 January 2013
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algorithm, namely DSP-L1, which is L1-norm based discriminative spatial pattern (DSP). Compared with
the conventional DSP, DSP-L1 takes advantage of the robust L1-norm modeling that expects to perform
better in suppressing the effect of outliers. Computationally, an iterative approach is introduced to find
the spatial filters of DSP-L1. Experimental results on two EEG data sets of motor movements demonstrate
the efficiency of the proposed method.

© 2012 Elsevier Ltd. All rights reserved.
. Introduction

EEG-based brain computer interfaces (BCIs) provide a communi-
ation channel for patients with severe neuromuscular disabilities
y directly translating human intentions into control signals
or outside services [1–3]. One crucial part of a BCI system is
he accurate and efficient pattern recognition for various men-
al tasks. However, the scalp-recorded EEG samples generally
uffer a low signal-to-noise-ratio (SNR) due to some accompa-
ying physiological activities, such as unconscious jaw clenching
nd swallowing, electrooculogram (EOG) and electromyogram
EMG) [4–7], as well as non-physiological sources, such as 50 Hz
ower-line noise [7]. Particularly in a clinical setting, it seems
ore difficult to obtain outlier-free data sets [7,8]. In some

ccasions, the outlier-contaminated data can be manually dis-
arded during an offline analysis by visual inspection, while they
re unavoidable in online applications. If the contaminated sig-
als are rejected during specific time periods, the online system
ay not be applicable [7]. Therefore, developing robust machine

earning algorithms to handle outliers for EEG signal pattern
ecognition is necessary in the implementation of a stable BCI sys-
em.
In recent years, spatial filtering algorithms are widely used
n EEG signal processing and proven to be extremely efficient in
ingle-trial analysis [2,9,10]. Discriminative spatial pattern (DSP)

∗ Corresponding author.
E-mail addresses: hxwang@seu.edu.cn, haixian wang@hotmail.com (H. Wang).

746-8094/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.bspc.2012.12.004
is one of such methods developed for the classification of EEG
signals based on movement related potentials (MRPs) compo-
nents, which are typical brain activities during motor movement
task. Specifically, MRPs are non-oscillatory potential shifts (0–7 Hz)
starting with a steep negative slope prior to finger movement
onset and reaching a negative peak approximately 100 ms after
movement onset [9,11–13]. The basic idea of DSP comes from
two-dimensional Fisher linear discriminant analysis (2DLDA) [14],
which separates two classes by maximizing the between-class sep-
aration and minimizing the within-class separation. Particularly,
to focus on MRPs-based EEG classification, subject-specific opti-
mization of time and frequency are required before the spatial
filtering.

However, DSP method focuses on low-frequency signals which
happen to be the frequency range of artifacts such as EOG activ-
ity [5,7]. The negative effect of noise is likely to be highlighted by
the L2-norm employed in the formulation of DSP, giving a rise to
the possibility of distorting the spatial filters of DSP. Given the fact
that the L1-norm is more robust with respect to noise than the L2-
norm [15–18], we propose an L1-norm based DSP, named DSP-L1,
to suppress the potential influence of noise. Due to the introduc-
tion of the L1-norm, the computation of DSP-L1 is far from trivial.
To address this computational issue, we use a simple and effec-
tive iterative algorithm to obtain the spatial directions of DSP-L1.
With the L1-norm, it is expected that DSP-L1 has better perfor-

mance than DSP. We demonstrate the advantage of the proposed
DSP-L1 over DSP on both EEG data artificially added with multivari-
ate outliers and real EEG data that is badly contaminated by EOG
or EMG.

dx.doi.org/10.1016/j.bspc.2012.12.004
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:hxwang@seu.edu.cn
mailto:haixian_wang@hotmail.com
dx.doi.org/10.1016/j.bspc.2012.12.004
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Table 1
Algorithmic procedure of DSP-L1.

Input: Yj = (Yj1, Yj2, ..., Yjm , ..., YjK),Zij = (Zij1, Zij2, ..., Zijm , ..., ZijK),Yjm ∈RC , Zijm ∈RC

Initial vector ω1(0)∈RC with unit length, step size � chosen from{
�1, �2, ..., �r

}
, iterative number t and convergence threshold ε.

Output: Optimal spatial filter ω∗1 maximizing (5).

DSP-L1 Algorithm. At iteration t, the objective function (5) is rewritten as

JDSP-L1(ω1(t)) =

∑
j
nj ||ω1(t)T Yj ||

1∑
j

∑nj

i=1
||ω1(t)T Zij ||

1

, (6)

While

(a) Define two polarity functions to remove the absolute value operation in (6)

pjm(t) =
{

1 ω1(t)T Yjm≥0

−1 ω1(t)T Yjm < 0
(7)

qijm(t) =
{

1 ω1(t)T Zijm≥0

−1 ω1(t)T Zijm < 0
(8)

(b) Let

d(ω1(t)) =

∑
j
nj

∑K

m=1
pjm(t)Yjm∑

j
nj

∑K

m=1

∣∣ω1(t)T Yjm

∣∣ −
∑

j

∑nj

i=1

∑K

m=1
qijm(t)Zijm∑

j

∑nj

i=1

∑K

m=1

∣∣ω1(t)T Zijm

∣∣
(c) For h = 1 : r

ω(h)
1 (t + 1) = ω1(t)+ �hd(ω1(t))

End
(d) ω∗1(t + 1):=arg max JDSP-L1(ω(h)

1 (t + 1)), h∈ {1, 2, . . ., r}
(e) If JDSP-L1(ω∗1(t + 1))− JDSP-L1(ω1(t)) < ε

ω∗1 = ω1(t), break
Else

ω∗1(t + 1)← ω∗1(t + 1)

||ω∗1(t + 1)||2
, ω1(t)← ω∗1(t + 1), and t ← t + 1

End while
14 Q. Tang et al. / Biomedical Signal Pr

The remainder of the paper is organized as follows: In Section 2,
e first review the conventional DSP formulation and then propose

he DSP-L1 method. The experimental results of EEG single-trial
lassification are presented in Section 3. Discussion is given in Sec-
ion 4. Finally, Section 5 concludes the paper.

. Methods

.1. Discriminative spatial patterns (DSP)

In this study, we consider the situation with only two classes.
or each of the subject, an aggregation of multi-trials in both classes
s used to compute optimal spatial filters. Assume that Xj(i)∈RC×K

s the EEG data of the ith trial from class j(j∈ {+ , −}), where C is the
umber of electrodes and K is the number of samples (i.e., recording
ime points). The within-class scatter matrix and the between-class
catter matrix are respectively given by

w =
∑

j

nj∑
i=1

(Xj(i)−Mj)(Xj(i)−Mj)
T , (1)

B =
∑

j

nj(M −Mj)(M −Mj)
T , (2)

here T denotes the transpose operator, nj is the number of trials
n class j, Mj is the mean of the trials from class j defined as Mj =
/nj

∑nj
i=1Xj(i), and M is the mean of all the trials.

The objective function of DSP is given by

DSP(˝) = det(˝T SB˝)
det(˝T SW ˝)

, (3)

here det(·) denotes matrix determinant. DSP aims to find the
ptimal discriminative transformation matrix ˝DSP(˝DSP ∈C×D,
≤C) maximizing class means and minimizing within class scat-

ers, where D is the number of selected spatial filters [9,19]. Solution
o �DSP can be achieved by solving the generalized eigenvalue prob-
em SW� l = �lSB� l, where �l denotes eigenvalue and � l ∈RC is the
orresponding eigenvector. �DSP is given by the eigenvectors of
he first D largest eigenvalues, i.e., ˝DSP = {�1, �2, ..., �D}.

It should be pointed out that, in the case that SW is singular,
regularization parameter ˛ (say ˛ = 0.1) is introduced to modify

W by SW← (1−˛)SW + ˛IC, where IC is the C-dimensional identity
atrix.

.2. L1-norm based discriminative spatial patterns (DSP-L1)

The formulation of DSP is based on L2-norm. To see this point,
e substitute (1) and (2) into (3), resulting in

DSP(�l) =
∑

jnj||�T
l

(M −Mj)||22∑
j

∑nj

i=1||�T
l

(Xj (i)−Mj)||
2

2

, (4)

here ||·||2 denotes L2-norm. Since M−Mj and Xj(i)−Mj are fixed

iven training data, we use Yj = M−Mj and Zij = Xj(i)−Mj to simplify
he expression. For a robust modeling [15–18], we replace the L2-
orm in DSP with the L1-norm and propose the objective function
f DSP-L1 as

DSP-L1(ωd) =
∑

jnj||ωT
d

Yj||1∑
j

∑nj

i=1||ωT
d

Zij||1
, (5)
where ||·||1 denotes L1-norm, ωd is a discriminative spatial filter
in the L1-norm modeling, i.e., the dth spatial filter of ˝DSP-L1 (the
transformation matrix for DSP-L1, i.e., ˝DSP-L1 = (ω1, ω2, ..., ωD)).
Due to the introduction of the L1-norm, the optimization problem
of (5) is far from trivial. Motivated by the recent research in solv-
ing L1-norm-based optimization problem [15–18], we present an
iterative algorithm to find the first optimal spatial projection ω1,
and then extend to multiple ones. The iterative steps are listed in
Table 1.

2.2.1. Justification
With the iterative procedure, we guarantee that the objective

function (6) is increased monotonously, i.e., in each iterative step
JDSP-L1(ω1(t + 1)) > JDSP-L1(ω1(t)) always holds. Following the basic
idea of [15–18], we present the justification as follows.

We rewrite (6) as

JDSP-L1(ω1(t)) =
∑

jnjω1(t)T ϕj(t)∑
j

∑nj

i=1

[
(1/2)(ω1(t)T 	ij(t)ω1(t))+ (1/2)
ij(t)

] ,

(9)
where ϕj(t) =
∑K

m=1pjm(t)Yjm, 	ij(t) =∑K
m=1(ZijmZT

ijm
)/(|ω1(t)T Zijm|), 
ij(t) =

∑K
m=1|ω1(t)T Zijm|.
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Since (9) is nondifferentiable, we introduce a vicarious function
(�) as

(�) = ln

( ∑
jnj�

T ϕj(t)∑
j

∑nj

i=1

[
(�T 	ij(t)�)+ 
ij(t)

]
)

. (10)

Note that in (10), ϕj(t), 	ij(t), 
 ij(t) are fixed at iteration t while
nly � is variable. The gradient of L(�) with respect to � is calculated
s

(�) =
∑

jnjϕj(t)∑
jnj�T ϕj(t)

−
∑

j

∑nj

i=1	ij(t)�∑
j

∑nj

i=1(1/2)
[
(�T 	ij(t)�)+ 
ij(t)

] . (11)

Replacing � with ω1(t), we have that

(ω1(t)) =
∑

jnj

∑K
m=1pjm(t)Yjm∑

jnj

∑K
m=1|ω1(t)T Yjm|

−
∑

j

∑nj

i=1

∑K
m=1qijm(t)Zijm∑

j

∑nj

i=1

∑K
m=1|ω1(t)T Zijm|

.

(12)

Here, (12) is the exact quantity d(ω1(t)) in Table 1, which points
o the increasing direction of (10) at the point ω1(t). By (10), we
ave that L(ω1(t + 1)) > L(ω1(t)), i.e.∑

jnjω1(t + 1)T ϕj(t)

(1/2)
∑

j

∑nj

i=1

[
(ω1(t + 1)T 	ij(t)ω1(t + 1))+ 
ij(t)

]
>

∑
jnjω1(t)T ϕj(t)

(1/2)
∑

j

∑nj

i=1

[
(ω1(t)T 	ij(t)ω1(t))+ 
ij(t)

] . (13)

Clearly, the right part of (13) is identical with (9), i.e.,
DSP-L1(ω1(t)). On the other hand, the numerator in the left part of
13) can be rewritten as

j
njω1(t + 1)T ϕj(t) =

∑
j
njω1(t + 1)T

∑K

m=1
pjm(t)Yjm

≤
∑

j
njω1(t + 1)T

∑K

m=1
pjm(t + 1)Yjm

=
∑

j
njω1(t + 1)T ϕj(t + 1). (14)

The inequality in (14) holds due to the fact that pjm(t + 1) is
esigned for ω1(t + 1). In other words, ω1(t + 1)Tϕj(t) may be neg-
tive value while ω1(t + 1)Tϕj(t + 1) is always nonnegative. The
enominator in the left part of (13) can be rewritten as

1
2

∑
j

nj∑
i=1

[(ω1(t + 1)T 	ij(t)ω1(t + 1))+ 
ij(t)]

=
∑

j

nj∑
i=1

[
1
2

K∑
m=1

(ω1(t + 1)T Zijm)
2

|ω1(t)T Zijm|
+ 1

2

K∑
m=1

|ω1(t)T Zijm|
]

≥
∑

j

nj∑
i=1

min
� ∈RK

+

[
1
2

∑K

m=1

(ω1(t + 1)T Zijm)
2

|�m| + 1
2
||�||1

]

=
∑

j

nj∑
i=1

||ω1(t + 1)T Zij||1, (15)

T
here � = (�1, �2, ..., �K) . The last inequality in (15) is pre-

ented according to the fact [20] that, for any vector 
 = (
1, 
2,
.., 
K)T, there is the equality ||
||1 = min

� ∈RK
+
(1/2)

∑K
m=1(
2

m/|�m|)+
ng and Control 10 (2014) 313–321 315

(1/2)||�||1 and the minimum is uniquely reached when �m =
|
m|,∀m∈

{
1, 2, ..., K

}
.

Combining (13)–(15), we have that

JDSP-L1(ω1(t)) =
∑

jnjω1(t + 1)T ϕj(t)

(1/2)
∑

j

∑nj

i=1

[
(ω1(t + 1)T 	ij(t)ω1(t + 1))+ 
ij(t)

]
≤
∑

jnjω1(t + 1)T ϕj(t + 1)∑
j

∑nj

i=1||ω1(t + 1)T Zij||1
= JDSP-L1(ω1(t + 1)). (16)

Thus, the justification is done.
It should be pointed out that the step size � should be carefully

selected. In this study, we select � from 1e−5 to 1e−2. Since the
initial vector ω1(0) can be set arbitrarily, we employ the solution of
DSP as the initial vector, which seems to be more likely to produce
a global maximum value.

2.2.2. Extension to multiple spatial filters
After the computation of ω1, we proceed to find other directions

ωd (d∈ Z+, 2≤d≤D) as follows.
First we will seek ω2 which is in the orthogonally complemen-

tary direction of ω1, i.e., the constraint ωT
1ω2 = 0 holds. Therefore,

we define an equation

ω2 = (Ic −ω1ωT
1)ˇ1, (17)

where ˇ1 ∈RC. Then, substituting (17) into (5) and setting Yj as Y (1)
j

,

Zij as Z(1)
ij

, we find the optimal ˇ1 to maximize

JDSP-L1(ˇ1) =
∑

jnj||ˇT
1Y (2)

j
||

1∑
j

∑nj

i=1||ˇT
1Z(2)

ij
||

1

, (18)

where Y (2)
j
= (Ic −ω1ωT

1)Y (1)
j

, Z(2)
ij
= (Ic −ω1ωT

1)Z(1)
ij

. The optimal ˇ1

can be obtained by following the steps in Table 1. Specifically, Yj

and Zij are replaced by Y (2)
j

and Z(2)
ij

respectively, and initial vector
ˇ1(0) is set as the secondary spatial direction of DSP. Thus ω2 are
obtained.

In the process of finding ωk, we require that ωT
1ωk+1 = 0,

ωT
2ωk+1 = 0, . . ., ωT

k
ωk+1 = 0. Let ˝k = (ω1, ω2, ..., ωk) and we define

ωk+1 = (Ic −˝k˝T
k
)ˇk. Then ˇk can be obtained by maximizing

JDSP-L1(ˇk) =
∑

jnj||ˇT
k
Y (k+1)

j
||

1∑
j

∑nj

i=1||ˇT
k
Z(k+1)

ij
||

1

, (19)

where Y (k+1)
j

= (Ic −˝k˝T
k
)Y (k)

j
and Z(k+1)

ij
= (Ic −˝1˝T

k
)Z(k)

ij
.

2.3. Classification

For each trial Xj(i), the mean values (in terms of the samples in
time) of each projection after the transformation matrices of DSP
or DSP-L1 are calculated as features for classification [9,11], i.e.,

fDSP =mean(˝T
DSPXj(i)), fDSP ∈RD. (20)

Likewise,

fDSP-L1 =mean(˝T
DSP-L1Xj(i)), fDSP-L1 ∈RD. (21)

The selection of the number of spatial filters for both DSP and
DSP-L1 will be discussed in Section 3.
In this section, we evaluate the performance of DSP-L1 in the
EEG classification task of two motor movements. Two EEG data
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ets are used in our experiments. Data set 1 is from BCI Compe-
ition 2003 [21]. We do the classification task as the competitors
id, i.e., spatial filters and classifier learned from the training data
re used to predict the labels of the testing data. Besides, to inves-
igate the robustness of DSP and DSP-L1, multivariate outliers are
ntroduced into the training data. Data set 2 is provided by [22–24],
onsisting of EEG data from 30 subjects (the data of 109 volunteers
re available online and we use the first 30 ones, i.e., S001-S030,
n this study). Since the data of some subjects are badly contam-
nated by EOG or EMG artifacts (as illustrated in Section 3.4), we
nvestigate the performance of DSP-L1 in suppressing the influence
f those real outliers. Finally for comparison purpose, the classifi-
ation accuracies obtained from DSP-L1 algorithm are compared
ith that of DSP algorithm, some LDA variants and other relevant
ethods under the same experimental setting.

.1. EEG data sets for evaluation

Data set 1 is the data set IV of the BCI Competition 2003, which
as recorded from one normal subject pressing corresponding keys
ith left or right fingers in a self-chosen order and timing (self-
aced 1 s). For classification task of left vs. right finger movement,
16 trials with labels and 100 unlabeled trials were provided for
raining and testing respectively. Each trial contained time segment
f 500 ms length ending at 130 ms before the key press onset. The
ata were recorded using 28 EEG channels mainly covering sen-
orimotor cortices at positions of the international 10/20-system.
n our experiment, we use the data that were down-sampled at
00 Hz and band-pass filtered between 0. 5 Hz and 200 Hz.

Data set 2 was recorded using BCI2000 instrumentation sys-
em [23] with 64-channel. Each subject was required to perform
4 experimental runs including 2 one-minute baseline runs and 12
uns of two-minute motor or imagery movement. In this study, we
ocus on the third, seventh and eleventh runs, where subjects per-
ormed left or right fist open and close movement task. Specifically,
target appeared on either the left or the right side of the screen for
.1 s while the subjects opened and closed corresponding fist until
he target disappeared, and then the subjects relaxed for about 4.1 s.
eft or right targets were presented in a randomized order and an
nnotation file with the target presenting time and type was avail-
ble for each run. The data was sampled at 160 HZ and the scalp
ocations for the 64 electrodes were also downloadable online.

.2. Preprocessing

For both data sets, a band-pass filter with cutoff frequencies
.5 Hz and 7 Hz is applied to capture MRPs shift as recommended

n [9,12]. For data set 1, the time segment located from −330 ms
o −130 ms, which is expected to contain the most discriminative

RPs, are selected for feature extraction as in [9,13]. As for each
rial in data set 2, we compute common average reference and cor-
ect baseline according to the average EEG data of the two baseline
uns. Considering the specific experimental paradigm of data set 2,
.e., only the time when the visual instructions (targets) presented
s given, while the time of movement onset is unknown, we find
t difficult to define the starting time of MRPs accurately. Previous
tudies [25–27] suggested that the starting time for MRPs varied
reatly across subjects. We follow the criterion in [26] by inspect-
ng the significant current sink to select the optimal time-window
or each subject. Specifically, we calculate the mean current source
ensity (CSD) values every 100 ms from 500 ms to 800 ms after the
arget occurs on three electrodes, i.e., C3, CP3, CP5, which cover

he major sensorimotor area. The time segment resulting in the
argest absolute mean CSD values are selected for the following
lassification process. That is to say, the length of the time window
s fixed at 100 ms for all the subjects but located at different time
ng and Control 10 (2014) 313–321

positions within 500 ms to 800 ms after the targets appear. It should
be noted that results may be further improved using some time
window selection strategies as mentioned in [2].

3.3. Introducing outliers

For data set 1, an outlier stimulation method [28] derived from
multivariate normal distribution model

c = NP(	+ 3�, ˙) (22)

is introduced to investigate the robustness of DSP-L1, where 	 and
� are the mean and standard deviation vector of all the channels of
the entire training sample respectively, and � is the covariance
matrix of all the training trials. Outliers are added to the train-
ing data at random selected time position. Parameter � is used
to control the occurrence probability of the introduced outliers,
i.e., the proportion of samples added with outliers, and it varies
among

{
0, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%

}
. At

each occurrence probability, experiments are repeated 20 times
for average classification accuracy.

3.4. Observing real outliers

In this subsection, S001 and S004 from data set 2 are illustrated
to show the effect of real EOG or EMG artifacts.

Fig. 1(a) shows the average time courses of S001 under two con-
ditions (i.e., left/right motor movement) over trials, where one can
observe the large absolute values centering at anterior head regions
around 700 ms after target occurs. It indicates possible presence of
strong EOG activities, which generally have high-amplitude than
normal EEG signals and most stress over the anterior head regions
[7]. As shown in Fig. 1(b), EEG signals of S004 are contaminated
by EMG artifacts, which have a stronger amplitude at the temporal
area, and can be distinguished from EOG artifacts by localization
[4,7]. Due to the fact that EMG artifacts have a broad frequency
distribution and mainly focus on 20-30 Hz and 40-80 Hz, the ampli-
tude of EMG artifacts can be reduced by the band-pass filtering
process in preprocess to some degree. While EOG artifacts are well
known to be low-frequency and they remain high amplitude after
preprocessing. In addition, both Fig. 1(a) and (b) imply that MRPs
present a maximum amplitude at the vertex in the steep negative
slopes and a greater effect in pre-frontal region just as the finding
in [25].

3.5. Evaluation and results

All the algorithms involved in our study are used as feature
extraction methods and the performance of those methods are
evaluated in terms of classification accuracy on the testing data.
Besides, the linear support vector machine (SVM) embedded in the
MatlabR2010b toolbox is used as classifier.

To well illustrate the iterative process of the proposed method,
we give an example on the training data of data set 1 as shown in
Fig. 2. Initial vectors of DSP-L1 are set as the corresponding spatial
filters of DSP after scaled to unit length. The convergence threshold
ε is set as 0.001. It shows that the value of DSP-L1 objective function
(JDSP-L1) enhances with each step of iteration when d = 1, 4, 8, 10. The
number of iterations varies for different spatial filters. We also find
that with introduced outliers, the number of iterations increases
for all the spatial filters, especially suboptimal ones. It makes sense
as larger deviation may require more iteration steps for a robust
spatial filter when outliers occur.
Fig. 3 shows classification results of DSP and DSP-L1 with
increasing occurrence frequency of outliers for data set 1. Brain
mappings of the first spatial filters with varied � for both meth-
ods are illustrated in Fig. 4. On the other hand, Fig. 5 shows the
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e., left/right motor movement) over trials. (a) S001. (b) S004.
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Fig. 1. Averaged time courses under two conditions (i.

erformance of DSP and DSP-L1 with different values of D, i.e., the
umber of spatial filters.

For data set 2, 20×5-fold cross-validations are employed on
he EEG data of each subject. Specifically, in each procedure, the
raining and testing data would be reorganized 5 times, i.e., all
he trials (45 trials from 3 runs) for one subject are divided into
parts, where each part is used once as testing data while the rest
arts are used as training data. This procedure would be repeated
0 times. The average classification accuracy of the 20×5-fold is
omputed as the final result. In this study, we compare the robust-
ess of proposed DSP-L1 with DSP, regularized LDA (RLDA) [29,30],
ncorrelated LDA (ULDA) [31,32], orthogonal LDA (OLDA) [33],

ocality preserving projections (LPP) [34], L1-norm based common
patial pattern (CSP-L1) [16], local discriminative spatial patterns
LDSP) [11], two-dimension uncorrelated LDA (2DULDA) and two-
imension orthogonal LDA (2DOLDA). Default values are adopted
or the regularization type and parameter in RLDA and a leave-
ne-out cross-validation strategy is employed to find appropriate
arameter � (�-nearest neighbors) for LPP and LDSP as in [11].

able 2 reports the average classification accuracies and the corre-
ponding standard deviations over 30 subjects for all the methods
hen the number of spatial filters is set as 1, 4, 8 or 10. Particularly,

Fig. 2. A plot of the convergence of JDSP-L1 versus iterative number t for the first, 4th,
8th and 10th spatial filters of ˝DSP-L1.
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Table 2
Average classification accuracies (%) and corresponding standard deviations over 30 subjects produced by RLDA, OLDA, ULDA, LPP, 2DOLDA, 2DULDA, CSP-L1, DSP and DSP-L1.

Methods Number of spatial filters

1 4 8 10

RLDA 70.87 ± 8.2 – – –
OLDA 70.87 ± 8.2 – – –
ULDA 70.87 ± 8.2 – – –
LPP 54.92 ± 10.3 64.84±11.8 67.76±8.2 67.97±8.1
2DOLDA 71.48 ± 6.9 67.58±6.6 67.25±7.0 67.52±6.3
2DULDA 71.48 ± 6.9 68.90±7.4 67.34±7.2 66.36±6.7
CSP-L1 57.71 ± 9.6 65.12±10.7 67.01±10.1 67.77±10.2
DSP 72.34 ± 6.9 69.35±7.4 67.74±7.3 66.85±6.7
DSP-L1 72.38 ± 6.9 73.03±7.8 74.47±8.4 75.50±9.4

Fig. 3. Comparing performance of DSP and DSP-L1 for data set 1 with increasing
o

D

t
s

4

r
D
s

ccurrence frequency of outliers. Average classification accuracies over the range of

∈
{

1, 4, 8, 10
}

are used as the final results.

he results produced by DSP and DSP-L1 methods are compared by
catter plots in Fig. 6(a)–(d) for different numbers of spatial filters.

. Discussion
Data set 1 is used to investigate how DSP-L1 and DSP perform in
esisting impact of introducing outliers. From Fig. 3, we can see that
SP-L1 outperforms DSP in general, and outstanding superiority is

hown at � = 15% by 8%. Less difference is found in classification

Fig. 4. Comparing brain mappings of the first spatial filters learnt by
Fig. 5. Average classification accuracies over all values of � using DSP and DSP-L1
with different value of D, i.e., the number of spatial filters, for data set 1.

accuracies with increasing occurrence frequencies of outliers. It
may due to the reason that when large part of the signals (>50%) are
contaminated by outliers, both methods learn spatial filters from
outliers instead of useful information. We also find the smaller devi-
ation of introduced outliers has no big influence on classification
results. Specifically, we control the deviation of outliers by altering
3� in (22) to �. The classification results with � are nearly identical
with that of 3� at certain probability of outliers occurrence. Fig. 4

illustrates some brain mappings of the first spatial filters when
� ∈
{

0, 15%, 25%, 50%
}

. Though they are messy at first sight, the
spatial filters of DSP-L1 seem to be more helpful to distinguish the

DSP and DSP-L1 on data set 1 when � =
{

0, 15%, 25%, 50%
}

.
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ig. 6. Scatter plots comparing the classification accuracies of DSP and DSP-L1 with d
SP are represented by blue dots, and depicted by magenta dots otherwise. (a) D = 1

ifferences in two motor movements in the case with introduced
utliers comparing to those of DSP.

On the other hand, from Fig. 5, we find that DSP-L1 has more
mprovement over DSP with large number of spatial filters (i.e.,

= 8 and D = 10 in this experiment). It seems that DSP-L1 produces
etter minor spatial filters instead of principle ones comparing with
SP. This can be explained by the fact that outliers are similar to
oise in the sense that they both have high-frequency components,
hich can only be captured by minor basis vectors instead of prin-

ipal ones [17]. Since the initial vectors of DSP-L1 are set as the
asis vectors of DSP, the iterative process, i.e., the process to find
patial filters of DSP-L1, can be seen as the process to modify the
asis vectors of DSP toward the optimal L1-norm dispersion, which

s more robust to outliers.
For data set 2, we compare the proposed DSP-L1 method with

SP, RLDA, ULDA, OLDA, LPP, LDSP and CSP-L1 in terms of feature
xtraction method for EEG classification.

Table 2 shows that DSP-L1 produces better average classifica-
ion accuracies than DSP over 30 subjects with different number
f spatial filters. Scatter plots in Fig. 6(a)–(d) further demonstrate
he superiority of DSP-L1 with large number of spatial filters.
wo-sample t-test indicates statistical significance improvement
f DSP-L1 over DSP when D = 8 and D = 10 with p = 0.02 and p = 0.00
t the 5% level, respectively. It proves efficiency of proposed DSP-L1
n withstanding the impact of natural occurring outliers.

RLDA, ULDA and OLDA are proposed to deal with high-
imensional, under sampled problem of classical LDA [31,33].
pecifically, RLDA uses a scaled multiple of the identity matrix
o obtain nonsingular scatter matrix. ULDA computes the optimal

ransformation matrix by firstly removing the null space of the
otal scatter matrix and the singularity problem is avoided implic-
tly. Discriminative spatial filters of OLDA are obtained by a further
rthogonalization step on those of ULDA. They have been applied
nt number of spatial filters for data set 2. For the subjects where DSP-L1 outperforms
= 4, (c) D = 8, (d) D = 10. The dash line indicates y = x.

in various applications successfully [31–33]. We point out that the
LDA variants (i.e., RLDA, ULDA and OLDA in this study) are one-
dimensional methods, i.e., the spatio-temporal matrix for one trial
is required to be scanned as a long vector before performing feature
extraction. They are not appropriate in MRPs-based single-trial EEG
classification as they fail to capture the differences in the amplitude
of MRPs. To make the comparison fair and conduct MRPs-based
EEG classification, we make a modification to form 2DULDA and
2DOLDA.

By the results in Table 2, we can see the superiority of DSP-
L1 over other methods with increasing number of spatial filters. It
is known that LDA and its variants are potentially constrained to
c−1 (c is the number of classes, that is, 2 in this study) features as
limited by the rank of scatter matrices. Besides, more features may
not provide extra information upon the first spatial filter. However,
DSP-L1 is free from this restriction and discriminates two classes
by learning more spatial filters. It is worth to point out that DSP-L1
is a robust modeling of DSP with regards to MRPs-based EEG classi-
fication, while RLDA, ULDA and OLDA aim to improve classification
capability of the classical LDA from some aspects like regulariza-
tion or orthogonalization of filters. When applying in MRPs-based
EEG classification, 2DULDA and 2DOLDA result in less improve-
ment comparing with the conventional DSP. This demonstrates the
advantage of DSP-L1 over LDA variants as a robust modeling in
single-trial EEG classification. In addition, Table 3 gives the clas-
sification accuracies of S001 and S004 (both are illustrated to be
badly contaminated by outliers in Section 3.4). It shows that DSP-
L1 results in relatively better classification accuracies over other
methods in specific cases.
LDSP and LPP are manifold modeling developed in the field of
machine learning and proven to be helpful in classification via the
using of the intrinsic local property of data [11,34]. LDSP is not
tested due to the aborted use of a leave-one-out strategy in finding
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Table 3
Classification accuracies (%) of S001 and S004 using RLDA, ULDA, OLDA, LPP, 2DOLDA and 2DULDA, CSP, DSP and DSP-L1 methods with increasing number of spatial filters.

Subjects Methods Number of spatial filters

1 4 8 10 Mean

S001 RLDA 73.15 – – – 73.15
OLDA 73.15 – – – 73.15
ULDA 73.15 – – – 73.15
LPP 73.72 71.98 74.69 74.57 73.74
2DOLDA 75.24 68.38 71.09 70.35 71.27
2DULDA 75.24 66.66 71.09 61.29 68.57
CSP-L1 59.00 71.53 74.20 72.09 69.21
DSP 75.48 67.66 63.19 62.21 67.13
DSP-L1 75.77 79.86 84.61 84.93 81.29

S004 RLDA 70.36 – – – 70.36
OLDA 70.36 – – – 70.36
ULDA 70.36 – – – 70.36
LPP 50.94 60.44 62.91 64.94 58.81
2DOLDA 79.06 70.15 73.28 70.15 73.16
2DULDA 79.06 73.68 73.00 72.03 74.44
CSP-L1 49.03 67.91 75.26 74.96 66.79
DSP 76.64 71.86 72.01 70.46 72.74
DSP-L1 76.74 77.59 83.64 81.61 79.89

Table 4
Comparison of the computational time (s) for all the proposed/utilized methods on the training data of data set 1 with � = 0.05 and D = 1. The second row is the corresponding
classification accuracies (%).

RLDA OLDA ULDA LPP 2DOLDA 2DULDA CSP-L1 DSP DSP-L1
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Computational time (s) 0.62 0.37 0.37 4
Classification accuracy (%) 57.10 57.10 57.10 5

he appropriate parameter � with this small sample setting (SSS).
PP is designed for unsupervised learning essentially [11], and may
e not necessarily appropriate for the supervised discrimination.

CSP-L1 is a robust version of common spatial pattern (CSP),
hich has been widely used in EEG classification based on

vent-related synchronization and desynchronization (ERS/ERD)
henomena [2]. Specifically, ERD/ERS is the attenuation/increase
ffect in rhythmic brain activity over sensorimotor cortex during
oth actual and imagined movement. It covers modulation of 	
hythm (around 10 Hz) and ˇ rhythm (around 20 Hz) [2,9]. Since
RD/ERS effects directly reflect the temporal variance change of
EG data, CSP is capable to catch this kind of feature by maximizing
he variance of spatially filtered signal under one class while mini-

izing it for the other class. Refs. [9,12] have pointed out that MRPs
nd ERD/ERS show different spatio-temporal activation patterns in
otor movements. From Table 2, we find that performance of CSP-

1 is not comparable with that of DSP-L1 due to the inappropriate
pplication of CSP-L1 in MRPs-based EEG classification.

Computationally, Table 4 lists the training time of all the
nvolved methods when applying to data set 1.

. Conclusion

In this paper, we present a new algorithm, named DSP-L1, to
xtract robust spatial filters from EEG data. Derived from the for-
ulation of DSP, DSP-L1 utilizes L1-norm based robust modeling

o further improve performance in withstanding the impact of out-
iers. Computationally, we propose an effective iterative approach
o learn the spatial filters of DSP-L1. Experimental results on two
EG data sets, in which one is artificially added with multivariate
utliers and the other contains the data that are badly contaminated

y EOG or EMG, demonstrate the effectiveness of the proposed
ethod. Finally, we point out that other neurophysiological fea-

ures in motor movement, such as ERD, can be combined to design
better BCI system with higher classification accuracies.
1.89 1.80 1.21 0.03 0.81
66.35 66.35 58.08 66.35 69.80
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