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a b s t r a c t

Robust dimensionality reduction is an important issue in processing multivariate data. Two-dimensional
principal component analysis based on L1-norm (2DPCA-L1) is a recently developed technique for robust
dimensionality reduction in the image domain. The basis vectors of 2DPCA-L1, however, are still dense.
It is beneficial to perform a sparse modelling for the image analysis. In this paper, we propose a new
dimensionality reduction method, referred to as 2DPCA-L1 with sparsity (2DPCAL1-S), which effectively
combines the robustness of 2DPCA-L1 and the sparsity-inducing lasso regularization. It is a sparse variant
of 2DPCA-L1 for unsupervised learning.We elaborately design an iterative algorithm to compute the basis
vectors of 2DPCAL1-S. The experiments on image data sets confirm the effectiveness of the proposed
approach.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Dimensionality reduction (DR) is of great importance for mul-
tivariate data analysis. For classifying typically high-dimensional
patterns in practice, DR can relieve the ‘‘curse of dimensionality’’
effectively (Jain, Duin, & Mao, 2000). Principal component anal-
ysis (PCA) (Jolliffe, 1986) is perhaps the most popular DR tech-
nique. It seeks a few basis vectors such that the variances of
projected samples are maximized. In the domain of image anal-
ysis, two-dimensional PCA (2DPCA) (Yang, Zhang, Frangi, & Yang,
2004) is more efficient, due to its direct formulation based on raw
two-dimensional images.

Although PCA and 2DPCA have been widely applied in many
fields, they are vulnerable at the presence of atypical samples
because of the employment of the L2-norm in the variance for-
mulation. As a robust alternative, L1-norm-based approacheswere
developed. Specifically, the L1-norm-based PCA variants include
L1-PCA (Ke & Kanade, 2005), R1-PCA (Ding, Zhou, He, & Zha, 2006),
PCA-L1 (Kwak, 2008), and non-greedy PCA-L1 (Nie, Huang, Ding,
Luo, & Wang, 2011). Li, Pang, and Yuan (2009) developed the L1-
norm-based 2DPCA (2DPCA-L1), which demonstrated encouraging
performance for the image analysis.

A limitation of the above methods is that the basis vectors
learned are still dense, which makes it difficult to explain the re-
sulting features. It is desirable to select themost relevant or salient
elements from a large number of features. To address this issue,
sparse modelling has been developed and received increasing at-
tention in the community of pattern classification (Wright et al.,
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2010). The sparsity was achieved by regularizing objective vari-
ables with a lasso penalty term using the L1-norm (Chen, Donoho,
& Saunders, 1998; Tibshirani, 1996). Mathematically, the classic
PCA approach could be reformulated as a regression-type opti-
mization problem, and then the sparsity-inducing lasso penalty
was imposed, resulting in sparse PCA (SPCA) (Zou, Hastie, & Tib-
shirani, 2006). The sparsity was further generalized to structured
version, producing structured sparse PCA (Jenatton, Obozinski, &
Bach, 2010).With the graph embedding platform (Yan et al., 2007),
various DR approacheswere endowedwith a unified sparse frame-
work by the L1-norm penalty (Cai, He, & Han, 2007; Wang, 2012;
Zhou, Tao, & Wu, 2011). Recently, the robustness of SPCA was im-
proved by the L1-norm maximization (Meng, Zhao, & Xu, 2012).

The sparse modelling for 2DPCA-L1, however, is still not ad-
dressed. Note that the L1-norm used in 2DPCA-L1 works as a ro-
bust measure of sample dispersion rather than regularizing basis
vectors. A common way of enforcing sparsity is to fix the L2-norm
and minimize the L1-norm with a length constraint.

In this paper, we limit our attention to the image analysis,
and consider extending 2DPCA-L1 with sparsity, referred to as
2DPCAL1-S. On account of the L1-norm used as the lasso penalty
in the sparsity-inducing modelling, we propose incorporating the
L1-norm lasso penalty, together with the fixed L2-norm, onto the
basis vectors of 2DPCA-L1. Consequently, 2DPCAL1-S maximizes
the L1-dispersion of samples subject to the elastic net (i.e.,
L2-norm and L1-norm) (Zou et al., 2006) constraint onto the basis
vectors. Formally, we combine the L1-dispersion and the elastic
net constraint onto the objective function. As can be seen, we use
the L1-norm for both robust and sparse modelling simultaneously.
Due to the involvement of the L1-norm in the two aspects, the
optimization of 2DPCAL1-S is not straightforward. We design an
elegant iterative algorithm to solve 2DPCAL1-S.
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The remainder of this paper is organized as follows. The con-
ventional 2DPCA-L1 method is briefly reviewed in Section 2. The
formulation of 2DPCAL1-S is proposed in Section 3. Section 4 re-
ports experimental results. And Section 5 concludes the paper.

2. Brief review of 2DPCA-L1

The 2DPCA-L1 approach, proposed by Li et al. (2009), finds basis
vectors that maximize the dispersion of projected image samples
in terms of the L1-norm. Suppose that X1, . . . ,Xn are a set of
training images with size q× p, where n is the number of images.
These images are assumed to be mean-centred.

Let v ∈ Rp be the first basis vector of 2DPCA-L1. It maximizes
the L1-norm-based dispersion of projected samples

g(v) =
n

i=1

∥Xiv∥1 (1)

subject to ∥v∥2 = 1, where ∥ · ∥1 and ∥ · ∥2 denote the L1-
norm and the L2-norm, respectively. In this paper, for a vector z =
(z1, . . . , zn)T , its Ld-norm is specified as ∥z∥d =

n
i=1 |zi|

d
1/d. Let

xji ∈ Rp be the jth row vector of Xi, i.e.,

Xi =

xT1i
...

xTqi

 . (2)

Then g(v) can be rewritten as

g(v) =
n

i=1

q
j=1

|vTxji|. (3)

The computation of v is implemented by an iterative algorithm
as follows. Denote by t the iteration number. The basis vector
v(t + 1) at the (t + 1)th-step is updated according to

v(t + 1) =

n
i=1

q
j=1

sji(t)xji n
i=1

q
j=1

sji(t)xji


2

, (4)

where sji(t) is defined as

sji(t) = sign(vT (t)xji) (5)

for j = 1, . . . , q; i = 1, . . . , n, where sign(·) is the sign function.
This iterative procedure was theoretically shown to converge to a
local maximum value of g(v) (Li et al., 2009). The reminder basis
vectors are computed likewise by using the deflated samples with
previously obtained basis vectors.

3. 2DPCA-L1 with sparsity

3.1. Basic idea

Sparse modelling has been receiving exploding attention in
computer vision and pattern classification (Wright et al., 2010).
The obtained basis vectors of 2DPCA-L1, however, are still dense
(Li et al., 2009). In other words, the projection procedure involves
all the original features. As we know, a typical image usually has
a large number of features. There may exist irrelevant or redun-
dant features for classification. It is important to find a few salient
features, which correspond to specific parts of the image such as
eyes or mouth of a face image. To select a set of representative
features, the projection vectors are expected to have very sparse
elements with respect to such features. Such sparse projection
vectors, if learned correctly, could encode semantic information
and thus deliver valuable discriminative information. The sparse
modelling has been successfully applied to many classification
problems (Wright et al., 2010).

It is desirable to learn sparse basis vectors for the purpose of
classification. In light of the advantage of the L1-norm penalty in
the sparse modelling (Chen et al., 1998; Tibshirani, 1996), we pro-
pose regularizing the basis vectors of 2DPCA-L1 using the L1-norm
penalty together with the fixed L2-norm.We refer to the proposed
approach as 2DPCAL1-S. It results in sparse basis vectors. Note
that the L1-norm used in 2DPCAL1-S takes effect in two different
perspectives: measuring dispersion and regularizing basis vectors.
Computationally, we elaborately design an iterative algorithm to
implement 2DPCAL1-S.

3.2. Objective function

We impose the sparsity-inducing L1-norm penalty, as well as
the fixed L2-norm, onto the basis vector v. Specifically, we inte-
grate the elastic net into the objective function. The elastic net gen-
eralizes the L1-norm lasso penalty by combining the ridge penalty
and can circumvent potential limitations of the lasso (Zou et al.,
2006). Consequently, we wish to select a vector v such that the ob-
jective function

h(v) =
n

i=1

q
j=1

|vTxji| −
η

2
∥v∥22 − γ ∥v∥1, (6)

ismaximized, where η and γ are positive tuning parameterswhich
are usually selected by cross validation. Due to the absolute value
operation, it is not a direct issue to solve the optimization prob-
lem (6).We thus derive an iterative algorithm for optimization and
show its monotonicity in the following two subsections.

3.3. Iterative algorithm

An iterative algorithm for 2DPCAL1-S is formally presented as
follows. Let v(0) be the initial basis vector.

1. Let t = 0, and initialize v(t) as any p-dimensional vector.
2. Compute the quantity sji(t) as in (5), which results in value 1,

0, or -1 depending on vT (t)xji larger than zero, equal to zero, or
less than zero, respectively.

3. Let

y(t) =
n

i=1

q
j=1

sji(t)xji, (7)

and

w(t) =

|v1(t)|

γ + η|v1(t)|
, . . . ,

|vp(t)|
γ + η|vp(t)|

T

, (8)

where vk(t) is the kth entry of v(t) for k = 1, . . . , p. Then, the
basis vector v(t) is updated as

v(t + 1) = y(t) ◦w(t), (9)

where ◦ denotes the element-wise product between two vec-
tors.

4. If the objective function h(v(t+1)) does not grow significantly,
then stop the iterative procedure and set v∗ = v(t + 1). Other-
wise, set t ← t + 1, and go to Step 2.

5. Output v∗ as the basis vector.

The computational complexity of the above algorithm isO(nqp)
per iteration. Note that the update formula (9) can be further
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expanded as

v(t + 1) =


|v1(t)|y1(t)/(γ + η|v1(t)|)

...
|vk(t)|yk(t)/(γ + η|vk(t)|)

...
|vp(t)|yp(t)/(γ + η|vp(t)|)

 , (10)

where yk(t) is the kth entry of y(t) for k = 1, . . . , p (cf. (7)).
Comparing the update formula (10) in 2DPCAL1-S with that (4) in
2DPCA-L1, we see that 2DPCAL1-S weights the entries of y(t) by
using the magnitudes of the corresponding entries of v(t) while
2DPCA-L1 treats the entries of y(t) equally in each iteration.

3.4. Monotonicity validation

Theorem. The objective function h(v(t)) increases with each itera-
tion by the above algorithmic procedure.

Proof. We establish the theorem by showing that h(v(t + 1)) ≥
h(v(t)).We start to compute the value of h(v(t)) at iteration t .With
the definition of sji(t), the first term of h(v(t)) can be rewritten as

n
i=1

q
j=1

|vT (t)xji| =
n

i=1

q
j=1

sji(t)vT (t)xji. (11)

Taking the sparsity of v(t) into account, some elements of v(t)may
happen to be zeros. Denote by v(t) the vector that is resulted from
removing the zero elements of v(t), and xji the vector that is formed
by leaving out the elements of xji whose indices correspond to the
indices of the zero elements of v(t). For example, suppose v(t) =
(1, 0, 2, 0, 3)T and xji = (4, 5, 6, 7, 8)T . Then v(t) = (1, 2, 3)T

and xji = (4, 6, 8)T . Therefore, (11) is equal to

n
i=1

q
j=1

sji(t)vT (t)xji. (12)

For the second term of h(v(t)), we have that

∥v(t)∥22 = ∥v(t)∥
2
2. (13)

In the third term of h(v(t)), ∥v(t)∥1 can be rewritten as

∥v(t)∥1 = ∥v(t)∥1

=
1
2
vT (t)U(t)v(t)+

1
2
∥v(t)∥1, (14)

where U(t) is a diagonal matrix defined as

U(t) = diag

|v1(t)|

−1, . . . , |vp(t)|
−1


. (15)

Here, vk(t) is the kth entry of v(t) for k = 1, . . . , p, and p is the
number of the nonzero elements of v(t). By substituting (12)–(14)
into (6), it follows that

h(v(t)) =
n

i=1

q
j=1

sji(t)vT (t)xji −
η

2
∥v(t)∥22

−
γ

2


vT (t)U(t)v(t)+ ∥v(t)∥1


. (16)

As a transitional procedure, we introduce a surrogate function
given by

Q (ν|v(t)) = νT


n

i=1

q
j=1

sji(t)xji


−

η

2
∥ν∥22

−
γ

2


νTU(t)ν + ∥v(t)∥1


, (17)
where ν is a vector of p-dimensional variable. We emphasize that
Q is a function of ν while v(t) is fixed at iteration t . With ν as the
independent argument, we maximize the function Q . Differentiat-
ing Q (ν|v(t)) with respect to ν and setting it to zero read

∂Q (ν|v(t))
∂ν

=

n
i=1

q
j=1

sji(t)xji − ην − γU(t)ν = 0, (18)

which implies that

ν =

ηIp + γU(t)

−1  n
i=1

q
j=1

sji(t)xji


, (19)

where Ip denotes the p-dimensional identitymatrix. Let v(t+1) =
ν, i.e., v(t + 1) is the maximum point of Q . Noting again that Q is
a function of ν, we have that

Q (v(t + 1)|v(t)) ≥ Q (v(t)|v(t)), (20)

i.e.,

vT (t + 1)


n

i=1

q
j=1

sji(t)xji


−

η

2
∥v(t + 1)∥22

−
γ

2


vT (t + 1)U(t)v(t + 1)+ ∥v(t)∥1


≥ vT (t)


n

i=1

q
j=1

sji(t)xji


−

η

2
∥v(t)∥22

−
γ

2


vT (t)U(t)v(t)+ ∥v(t)∥1


. (21)

As will be seen, the purpose of the above inequality is to bridge the
values between h(v(t + 1)) and h(v(t)).

By (16), the right hand of (21) is h(v(t)). We proceed to con-
sider the left hand of (21). For this purpose, we define the updated
p-dimensional vector v(t + 1) at the (t + 1)th iteration as fol-
lows. It is formed by inserting zero elements into v(t + 1) such
that the indices of the inserted zero elements of v(t + 1) are iden-
tical with the indices of the zero elements of v(t). Continuing the
example at the beginning of the proof, if v(t + 1) = (9, 9, 9)T ,
then v(t+1) = (9, 0, 9, 0, 9)T . With this designation of v(t+1),
the first term of the left hand of (21) can be rewritten as

n
i=1

q
j=1

sji(t)vT (t + 1)xji =
n

i=1

q
j=1

sji(t)vT (t + 1)xji

≤

n
i=1

q
j=1

sji(t + 1)vT (t + 1)xji

=

n
i=1

q
j=1

|vT (t + 1)xji|. (22)

The inequality holds based on the following observation: sji(t +
1)vT (t+1)xji is always nonnegative due to thedefinition of sji(t+1)
while sji(t)vT (t + 1)xji could possibly be negative. For the second
term of the left hand of (21), we have that

∥v(t + 1)∥22 = ∥v(t + 1)∥22. (23)

For the third term of the left hand of (21), we have that

vT (t + 1)U(t)v(t + 1)+ ∥v(t)∥1

=

p
k=1

v2
k(t + 1)
|vk(t)|

+ ∥v(t)∥1
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≥

p
k=1

v2
k(t + 1)
|vk(t + 1)|

+ ∥v(t + 1)∥1

= 2∥v(t + 1)∥1
= 2∥v(t + 1)∥1, (24)

where vk(t+1) is the kth entry of v(t+1). The inequality holds due
to the following lemma. Note that if some entries vj(t + 1) are ze-
ros, we can only consider the nonzero entries. By some operations,
we see that the result of (24) still holds.

Lemma (Jenatton et al., 2010). The L1-norm of any vector z has
the following variational equality:

∥z∥1 = min
ζ∈Rn
+

1
2

n
i=1

z2i
ζi
+

1
2
∥ζ∥1, (25)

and the minimum value is uniquely achieved at the situation ζi =
|zi| for i = 1, . . . , n, where zi and ζi are the ith entries of z and ζ ,
respectively.

Combining (22)–(24), we have that

h(v(t + 1)) =
n

i=1

q
j=1

|vT (t + 1)xji|

−
η

2
∥v(t + 1)∥22 − γ ∥v(t + 1)∥1

≥ vT (t + 1)


n

i=1

q
j=1

sji(t)xji


−

η

2
∥v(t + 1)∥22

−
γ

2


vT (t + 1)U(t)v(t + 1)+ ∥v(t)∥1


. (26)

Combining (16), (21) and (26), we obtain that

h(v(t + 1)) ≥ h(v(t)). (27)

Note that the expression of v(t+1) given in the proof is equivalent
to (9). With this update procedure, the monotonicity of the objec-
tive function is theoretically guaranteed. The proof of the theorem
is thus completed. �

3.5. Multiple basis vectors

We compute the first basis vector v1 by the algorithm outlined
in Section 3.3. Then, we use the deflation technique to extract the
remaining basis vectors. Specifically, the τ th (1 < τ ≤ p0) basis
vector vτ is computed by using the deflated samples

xdeflatedji = xji −
τ−1
l=1

vl(vTl xji), (28)

where vl are normalized to have unit length. That is, the informa-
tion contained in the previously obtained basis vectors is deducted.

The algorithmic procedure of 2DPCAL1-S is formally summa-
rized in Table 1.

4. Experiments

In order to evaluate the proposed 2DPCAL1-S algorithm, we
compare its performances of image classification and reconstruc-
tion with four unsupervised learning algorithms: PCA, PCA-L1,
2DPCA, and 2DPCA-L1. Two benchmark face databases FERET and
AR are used in our experiments.

In the experiments, the initial components of PCA-L1 are set
as the corresponding components of PCA. The initial components
of 2DPCA-L1 and 2DPCAL1-S are set as the corresponding compo-
nents of 2DPCA.
Fig. 1. Sample images of the FERET face database.

Fig. 2. Classification accuracy of the five algorithms on the FERET face database.

There are two tuning parameters in 2DPCAL1-S. It seems diffi-
cult to choose a pair of optimal parameters. However, by the up-
dated expression of v(t + 1), we see that the projection vector
essentially relates to the ratio η/λ. Without loss of generality, we
consider selecting the optimal ratio in our experiments.

4.1. FERET face database

The first experiment is conducted on a subset of the FERET
face database. We use 1400 images of 200 individuals, where each
individual has seven images, which show varying expressions and
view angles. The image size is 80 by 80. Some sample images are
illustrated in Fig. 1. For computational convenience, the images are
further resized into 30 by 30.

Ten-fold cross-validation (CV) strategy is adopted for perfor-
mance evaluation. That is, all images are randomly separated into
ten folds, in which nine folds are used for training and the remain-
ing one fold is for testing. This procedure is repeated ten times, and
the average classification rate is reported. For 2DPCAL1-S, in each
CV repetition, the ratio η/λ is determined on the training data by
again a ten-fold CV. Different values of η/λ are tried. Specifically,
log10 (η/λ), denoted as ρ, ranges from−3 to 3with a step of 1. The
value ofρ corresponding to themaximal average classification rate
is chosen to classify the testing data.

The five algorithms mentioned above are applied to extract
features, followed by the nearest neighbour classifier. Fig. 2 shows
the classification accuracy of the five algorithms. It tells us that
2DPCAL1-S outperforms 2DPCA and2DPCA-L1. This result suggests
that introducing the L1-norm regularization term into 2DPCA-L1
could improve the classification performance.

We investigate how the classification performance of 2DPCAL1-
S depends on ρ. Fig. 3(a) shows the classification accuracy of
2DPCAL1-S with different values of ρ. By comparison with the pa-
rameter ρ determined by the CV, we see that a constant value, say
ρ = 0 here, could yield a competitive (or the same) classifica-
tion accuracy. It could be observed that when ρ ≥ 0 the classi-
fication accuracy tends to decrease with the increasing number of
extracted features while when ρ < 0 the classification accuracy
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Table 1
Algorithmic procedure of 2DPCAL1-S with multiple basis vectors.

Input: training samples X1, . . . ,Xn of size q× p, number of basis vectors p0 (usually p0 < p), and regularization parameter γ .
Output: projection matrix V = (v1, . . . , vp0 ) ∈ Rp×p0 of p0 basis vectors.

1. Set τ = 1.
2. Compute the basis vector vτ :

(a) Use any p-dimensional vector as the initial vector v(0), and set t = 0.
(b) Define the sign function

sji(t) = sign(vT (t)xji),
where xji is the jth row vector of Xi .

(c) Update v(t) by
v(t + 1) = y(t) ◦w(t),

where
y(t) =

n
i=1
q

j=1 sji(t)xji ,

w(t) =

|v1(t)|

γ+η|v1(t)| , . . . ,
|vp(t)|

γ+η|vp(t)|

T
.

(d) If the objective functionn
i=1
q

j=1 |v
T (t + 1)xji| − η

2 ∥v(t + 1)∥22 − γ ∥v(t + 1)∥1
does not grow significantly, then exit the inner loop and set

vτ = v(t + 1).
Otherwise, set t ← t + 1, and go to Step 2(b).

3. Using the obtained basis vectors v1, . . . , vτ , deflate xi as
xdeflatedji = xji −

τ
l=1 vl(v

T
l xji),

where vl are normalized to have unit length.
4. If τ < p0 , then let τ ← τ + 1 and return to Step 2(a), wherein the deflated samples are used. Otherwise, stop the run and output the basis vectors V = (v1, . . . , vp0 ),
where the basis vectors are normalized.
a b

Fig. 3. Classification accuracy of 2DPCAL1-S with varying ρ on the FERET face database. Each curve corresponds to a value of ρ. (a) Use the basis vectors of 2DPCA as
initialization. (b) Use random initialization.
tends to increasewith the increasing number of extracted features.
In general, a positive ρ leads to better results than a negative one.
These trends are due to different weights of the L1-norm and the
L2-norm imposed on the projection vector v in the regularization
term.

In our experiments, we use the basis vectors of 2DPCA as the
initial basis vectors of 2DPCAL1-S. It may be helpful to compare the
output of the 2DPCAL1-S algorithm under different initializations.
We find that different initializations lead to slightly different
results. For example, as compared with Fig. 3(a), the classification
accuracy of 2DPCAL1-S using random initialization on the FERET
face database is shown in Fig. 3(b). It demonstrates that the
algorithm of 2DPCAL1-S finds a (local) maximum.

It is observed that the recognition accuracy of the 2DPCA-based
methods reaches the maximum value at the point of using two,
three, or four basis vectors and declines with larger numbers of
basis vectors. It suggests that the first few basis vectors extract
sufficient features for classification. The subsequent basis vectors
may produce redundant features and noise which deteriorate the
classification accuracy. Note that the classification accuracy varies
abruptly at some points. The reason may be that, for the 2DPCA-
based methods, one basis vector produces many features, which
are equal to the row size of the image. So, the classification
accuracy is sensitive to the number of basis vectors, which leads
to the classification peak.

It is well known that PCA can also be defined from the perspec-
tive of minimizing the reconstruction error with a few principal
components (Jolliffe, 1986). The reconstruction errormeasures the
expressive capacity of the principal components. We thus proceed
to consider the task of image reconstruction. To investigate the ro-
bustness, the database is intentionally contaminated. The polluted
data set is designed as follows. 20% of the total 1400 images are
randomly selected and occludedwith a rectangular noise. The rect-
angle is randomly located, and its size is at least 20 by 20, in which
the noise consists of random black and white dots.

Let Y1, . . . , Ym be the m (m = 1120) unoccluded images, X̄
the mean of all the 1400 images, and V the projection matrix ob-
tained by 2DPCA, 2DPCA-L1, or 2DPCAL1-S. Then, on the polluted
database, the average reconstruction error of the three methods is
defined by using the clean images, given by

1
m

m
i=1

∥Yi − ((Yi − X̄)VVT
+ X̄)∥F , (29)

where ∥ · ∥F denotes the Frobenius norm. The average reconstruc-
tion error of PCA or PCA-L1 can be likewise defined.
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Fig. 4. Average reconstruction errors of 2DPCAL1-S with various values of ρ on the
polluted FERET face database.

Fig. 4 shows the average reconstruction errors of 2DPCAL1-S
with varying values of ρ on the polluted FERET face database. From
the figure, we see that the average reconstruction error tends to
decreasewhenρ increases. The curves corresponding toρ = 2 and
ρ = 3 are very close to each other. Larger ρ has also been tried. The
average reconstruction error, however, has little variation when ρ
is larger than two.

We now set ρ as three in 2DCPAL1-S and compare its recon-
struction performance with other four algorithms. Fig. 5 shows
the reconstructed images of the five algorithms (i.e., PCA, PCA-L1,
2DPCA, 2DPCA-L1, and 2DPCAL1-S), wherein the first ten projec-
tion vectors are used for the image reconstruction. Fig. 6 shows the
average reconstruction error of the five algorithms. In the figure,
the two curves corresponding to 2DPCA-L1 and 2DPCAL1-S over-
lap, which means that they obtain nearly the same average recon-
struction error. When the feature number is larger than twelve,
PCA-L1 outperforms PCA. When the feature number is larger than
eight, 2DPCA-L1 and 2DPCAL1-S outperform 2DPCA. We empha-
size that, given the learned projection vectors, the reconstruction
error delineated in Fig. 6 is defined on the clean images. Fig. 6 is
not necessarily reflected in Fig. 5(b) which illustrates the polluted
images.

Note that the mechanisms of the PCA and the 2DPCA-based
methods are different in the sense that the former process full
images (converted into vectors) while the latter accommodate
each row vectors of the images. As a result, each basis vector of
the PCA-basedmethods yields one feature for an image while each
basis vector of the 2DPCA-based methods produces many features
(equalling the number of row vectors). So, it is not verymeaningful
to compare the performance of the PCA-based methods with that
of the 2DPCA-based methods using the same number of basis
vectors.
Fig. 6. Average reconstruction errors of the five different algorithms on the pol-
luted FERET face database .

Fig. 7. Sample images of the AR face database.

Fig. 8. Classification accuracy of 2DPCAL1-Swith varyingρ on theAR face database.

4.2. AR face database

The AR face database contains 3120 images of 120 subjects, i.e.,
26 images per subject. The images were taken with different facial
a b

Fig. 5. The reconstructed images on the polluted FERET face database. The first column shows the faces from the database; the following five columns show the reconstructed
faces by using the first ten projection vectors produced by PCA, PCA-L1, 2DPCA, 2DPCA-L1, and 2DPCAL1-S, respectively. (a) Images without occlusion. (b) Images with
occlusion. The last column in (b) shows the original unoccluded faces, which are used for visual comparison.
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Fig. 9. Classification accuracy of the five algorithms on the AR face database.

Fig. 10. Average reconstruction errors of 2DPCAL1-S with various values of ρ on
the AR face database with the natural occlusion.

expressions and illuminations, and some images were occluded
with black sunglasses or towels, as shown in Fig. 7. The image size
is 50 by 40.

The classification rates of 2DPCAL1-S with different values of
ρ are demonstrated in Fig. 8, where the ten-fold CV scheme
is employed. It can be observed that the maximal classification
accuracy is generally achieved when taking ρ as three. It also tells
us that ρ > 0 and ρ < 0 lead to different trends of classification
accuracy with respect to the number of extracted features.
Fig. 12. Average reconstruction errors of the five different algorithms on the AR
face database with the natural occlusion.

Based on Fig. 8, we fix ρ to be−3 in 2DPCAL1-S. The classifica-
tion performance of the five algorithms is shown in Fig. 9. We see
that 2DPCAL1-S achieves improved performance.

In the task of face reconstruction, we first learn the basis vectors
on all AR faces, and then calculate the reconstruction error via
(29), where the faces with black sunglasses or towels are regarded
as outlying samples. Fig. 10 shows the average reconstruction
errors of 2DPCAL1-S with varying ρ on the AR face database
with the natural occlusion. The error tends to decrease when ρ
increases. We choose ρ to be three in 2DPCAL1-S and compare
its reconstruction performance with the other four algorithms, as
shown in Figs. 11 and 12. It could be observed that PCA and PCA-L1
obtain nearly the same reconstruction error. Also, 2DPCA, 2DPCA-
L1 and 2DPCAL1-S obtain nearly the same result. The reason may
be that the influence of the natural occlusion is not enough to
demonstrate the superiority of the L1-norm-based approaches.
We thus consider polluting the faces artificially. Specifically, we
exclude the naturally occluded images in the experiment. Instead,
20% images are randomly selected from the clean images and
occluded with a rectangle of random black and white dots. In this
case, Fig. 13 shows the reconstructed images of the five algorithms
on the artificially polluted AR face database. The reconstruction
errors of the five algorithms are shown in Fig. 14, where the value
of ρ in 2DPCAL1-S is likewise selected as three. Again, 2DPCAL1-
S and 2DPCA-L1 obtain nearly the same average reconstruction
error. When the number of features is larger than eight, the two
algorithms are superior to 2DPCA. The classification accuracy of the
five algorithms with the ten-fold CV is shown in Fig. 15, where the
value ofρ in 2DPCAL1-S is selected as−3.We see that a satisfactory
classification accuracy is obtained on this artificially polluted AR
face database, and 2DPCAL1-S demonstrates its superiority.
Fig. 11. The reconstructed images on the naturally polluted AR face database. The first column shows the faces from the database; the following five columns show
the reconstructed faces by using the first ten projection vectors produced by PCA, PCA-L1, 2DPCA, 2DPCA-L1, and 2DPCAL1-S, respectively. (a) Images without occlusion.
(b) Images with natural occlusion.
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a b

Fig. 13. The reconstructed images on the artificially polluted AR face database. The first column shows the faces from the database, the following five columns show
the reconstructed faces by using the first ten projection vectors produced by PCA, PCA-L1, 2DPCA, 2DPCA-L1, and 2DPCAL1-S, respectively. (a) Images without occlusion.
(b) Images with artificially occluded occlusion. The last column in (b) shows the original unoccluded faces, which are used for visual comparison.
Fig. 14. Average reconstruction errors of the five different algorithms on the
artificially polluted AR face database.

4.3. Sparsity of 2DPCAL1-S

The sparsity of the projection matrix of 2DPCAL1-S is inves-
tigated in this subsection. In the task of face reconstruction, the
average reconstruction error of 2DPCAL1-S decreases with the in-
creasing value of ρ. When ρ is very large, the average reconstruc-
tion error of 2DPCAL1-S is low. At the same time, the projection
matrix of 2DCPAL1-S is not sparse.

In the task of face classification, the appropriate value of ρ
is small, and the projection matrix of 2DCPAL1-S is very sparse.
Since the ten-fold CV is employed in classification, a projection
matrix is obtained each time. For the FERET faces, there are ten
projection matrices with a size 30 × 30. And for AR faces, there
are ten projection matrices with a size 40× 30. Table 2 shows the
average cardinality of the first eight projection vectors. For FERET
faces, some pixels of an image are linearly combined as a feature.
For AR faces, the projection vector is very sparse, which results
in a single feature selection. In both the cases, most pixels of an
image are ignored, but we still obtain satisfactory classification
accuracy, which means that the selected features contain valuable
discriminative information.

5. Conclusion

A new subspace learning method, called 2DPCAL1-S, is devel-
oped for image analysis in this paper. It uses the L1-norm for both
robust and sparse modelling. The role of the L1-norm is two-fold.
One is the robust measurement of the dispersion of samples, as in
2DPCA-L1. The other is to introduce penalty, resulting in the sparse
Fig. 15. Classification accuracy of the five algorithms on the artificially polluted AR
face database.

Table 2
Average sparsity of 2DPCAL1-S.

Database ρ Dimension Projection vector
1 2 3 4 5 6 7 8

FERET 0 30 23 6 4 5 4 5 6 7
AR −3 40 1 2 1 1 1 1 1 1

projection vectors. 2DPCAL1-S utilizes the feature extraction and
the feature selection simultaneously and robustly. Computation-
ally, an iterative algorithm is designed, the monotonicity of which
is theoretically guaranteed. The effectiveness of 2DPCAL1-S on im-
age classification and reconstruction is experimentally demon-
strated.

The optimal parameter ρ, however, may depend on the data
set at hand. It is hard to be determined analytically, which needs
further investigation and is our future work.
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