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Generalized 2-D Principal Component Analysis
by Lp-Norm for Image Analysis

Jing Wang

Abstract—This paper proposes a generalized 2-D principal
component analysis (G2ZDPCA) by replacing the L2-norm in
conventional 2-D principal component analysis 2DPCA) with
Lp-norm, both in objective and constraint functions. It is a
generalization of previously proposed robust or sparse 2DPCA
algorithms. Under the framework of minorization—-maximization,
we design an iterative algorithm to solve the optimization prob-
lem of G2DPCA. A closed-form solution could be obtained in
each iteration. Then a deflating scheme is employed to generate
multiple projection vectors. Our algorithm guarantees to find a
locally optimal solution for G2DPCA. The effectiveness of the
proposed method is experimentally verified.

Index Terms—Convex maximization, generalized 2-D princi-
pal component analysis (G2ZDPCA), image analysis, Lp-norm,
minorization-maximization (MM).

I. INTRODUCTION

RINCIPAL component analysis (PCA) [1], [2] has been

widely applied in dimensionality reduction, signal recon-
struction, and pattern classification. However, its quadratic
formulation renders it vulnerable to noises. This problem facil-
itates many robust PCA algorithms which utilize L1-norm on
the objective function, e.g., L1-PCA [3], R1-PCA [4], and
PCA-L1 [5]. Besides robustness, sparsity is also a desired
property [6]. By applying LO- or L1-norm on the constraint
function of PCA, sparsity could be introduced, resulting in
a series of sparse PCA (SPCA) algorithms [7]-[10]. A newly
proposed algorithm called robust SPCA (RSPCA) [11] applies
L1-norm both in objective and constraint functions of PCA,
inheriting the merits of robustness and sparsity.

Considering that LO-, L1-, and L2-norm are all special
cases of Lp-norm, it is natural to replace the L2-norm
in traditional PCA with arbitrary norm, as proposed in
PCA-Lp [12] and generalized PCA (GPCA) [13]. In PCA-Lp,
the Lp-norm is imposed on the objective function of PCA.
A greedy solution based on a gradient ascent method or a
Lagrangian multiplier method and a nongreedy solution based
on a Lagrangian multiplier method are proposed to solve
PCA-Lp [12]. In GPCA, the Lp-norm is imposed both in
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objective and constraint functions of PCA. The successive
linearization technique (SLT) [14], [15] is employed to solve
GPCA [13].

When applying the above robust and sparse PCA algo-
rithms in image analysis, each image should be reshaped
into a long vector in prior. In this way, the spatial infor-
mation in images is destroyed and extensive computations
are usually inevitable due to high dimensionality of reshaped
images [16]. Image-as-matrix methods represented by 2-D
PCA (2DPCA) [16] offer insights for improving the above
robust PCA and SPCA algorithms. Two related improvements
are L1-norm-based 2DPCA (2DPCA-L1) [17] and 2DPCA-L1
with sparsity (2DPCALI1-S) [18], corresponding to the 2-D
cases of PCA-L1 and RSPCA, respectively.

This paper proposes a generalized 2DPCA (G2DPCA)
by replacing the L2-norm of conventional 2DPCA with
Lp-norm, on both objective and constraint functions, thus
greatly extending previous 2DPCA-based algorithms. The pro-
posed algorithm is greatly enlightened by GPCA [13]. Besides
the image-as-matrix representation, G2DPCA differs from
GPCA mainly by designing an elegant solution under the
framework of minorization—-maximization (MM) [19] rather
than SLT. MM theoretically guarantees to find a locally opti-
mal solution for an optimization problem while SLT intends
to linearize a nonsmooth problem, thus MM is more stronger
than SLT.

The remainder of this paper is organized as follows. In
Section II, some robust and sparse 2DPCA algorithms are
reviewed and the G2DPCA algorithm is proposed. Section III
introduces the techniques that would be used to solve
G2DPCA. Section IV provides the solution of G2DPCA.
Section V reports experimental results. Section VI concludes
this paper.

II. ROBUST AND SPARSE 2DPCA ALGORITHMS

The notations in this paper are described as follows.
Lowercase letters denote scalars, boldface lowercase letters
denote vectors, boldface uppercase letters denote matrices;
sign(-) denotes the sign function; | - | denotes the abso-
lute value; w o v denotes the Hadamard product, i.e., the
element-wise product between two vectors; |w|” denotes the
element-wise power of the absolute value of a vector; diag(w)
denotes a square and diagonal matrix by putting the ele-
ments of w on the main diagonal; ||-[l1, [I-ll2, [I-llp, and ||-|IF
denote L1-, L2-, Lp-, and Frobenius-norm, respectively. Note
that the sign function and the absolute value function could
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be applied on a scalar or on a vector in the element-wise
manner.

Traditionally, robust and sparse 2DPCA algorithms focus
on finding a single projection vector each time, then a defla-
tion scheme [20] is implemented to extract multiple projection
vectors [17], [18]. This strategy is also adopted in this paper.

A. 2DPCA
Suppose there are n training image samples X1, Xo, ..., X,
where X; € RP" i =1,2,...,n. hand w are the height and

width of the images, respectively. The images are assumed to
be mean-centered, i.e., 1/n 27:1 X; = 0. 2DPCA [16] finds
its first projection vector w € R" by solving the following
optimization problem:

n
2 2
max Y IX;wl3, st wlz = 1. ()
i=1
The projection vector w could be obtained by calculating
the eigen decomposition of an image covariance matrix and
selecting the eigenvector with the largest eigenvalue.

B. 2DPCA-LI

2DPCA-L1 [17] could be formulated by replacing the
L2-norm in the objective function of 2DPCA with L1-norm.
That is, 2DPCA-L1 finds its first projection vector by solving
the problem

n
max Y IXiwli, st w3 = 1. @
i=1
The projection vector w could be calculated by an iterative
algorithm. Let k be the iteration number, w* be the projection
vector at the kth step, then w could be updated by

n
vk = ZXiTsign(Xiwk) 3)
i=1
k
k+1 v
- @)
V¥ 112

C. 2DPCALI-S

2DPCALI-S [18] could be formulated by applying L1-norm
both in objective and constraint functions of 2DPCA as
follows:
n
max Y IXiwlh, stwlhi<e wliz=1 )
i=1
where c is a positive constant. The projection vector w could
be updated iteratively by

n
vk = ZXiTsign(X,-wk) (6)
=1
k
k_ k |Wi .
u; =Vi————, i=1,2,...,w (7)
i 1)L + }Wf
k
k+1 __ u (8)

[P

where uf € R” is a vector:; wf, vf, and uf are the ith elements
of wK, vk, and u*, respectively; A is a positive scalar which
serves as a tuning parameter in this algorithm. When A is set
to be zero, 2DPCALI-S reduces to 2DPCA-L1.

Notice that w with a subscript is different from w without
a subscript in this paper. The former one indicates an element
in the projection vector w while the latter one indicates the
image width.

D. G2DPCA

Inspired by the above robust and sparse 2DPCA algorithms,

we propose the G2DPCA as follows:

n

max Y IXpwlli, st wip =1 ©)

i=1
where s > 1 and p > 0. It is obvious that 2DPCA and
2DPCA-L1 are two special cases of G2DPCA. 2DPCALI-S
is unique, but it is closely related to G2DPCA. Intuitively,
2DPCALI-S originates from G2DPCA with s =1 and p =1
which leads to a projection vector with only one nonzero
element. Then the L2-norm constraint is employed to fix
this problem, resulting in 2DPCALI1-S. On the other hand,
G2DPCA with s = 1 and 1 < p < 2 behaves like 2DPCALI1-S
since the Lp-norm constraint in G2DPCA behaves like the
mixed-norm constraint in 2DPCALI-S.

Instead of trying different objective functions for G2DPCA
as in [13], we limit our attention to the optimization problem
in (9) because it is representative. Also, we want to check
how the s value would affect the performance of G2DPCA in
image reconstruction and classification.

After obtaining the first r projection vectors W =
[wi, wa,...,w,] for 2DPCA, 2DPCA-LI1, 2DPCALI-S, or
G2DPCA, 1 < r < w, the (r + 1)th projection vector w,4|
could be calculated similarly on the deflated samples [20]

X;_ieﬂated :Xi(I—WWT)v i=1,2,...,n (10)

This deflation procedure is implemented repeatedly to
extract multiple projection vectors.

III. RELATED TECHNIQUES

Before proceeding to the solution of G2DPCA problem,
we will first introduce some related techniques that would be
utilized.

A. MM Framework

Suppose f(w) is the objective function to be maximized,
under the MM framework [19], if there exists a surrogate
function g(w|wX) which satisfies two key conditions that

Fv) = g(wH|wh)
f(w) > g(w‘wk) for all w

(11)
12)

then f(w) could be optimized by iteratively maximizing the
surrogate function as follows:

whtl = argmaxg(w‘wk>. (13)
w
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One could see that
ﬂWHUZfO%H>_dﬁHWM>+g@MWWQ
= (") = (W) (o)
= £(") = () (')
)

where the first inequality holds because f(w) — g(w|wh)
reaches its minimum at w = w* as a result of the two key
conditions, while the second inequality holds because g(w|w*)
reaches its maximum at w = w*! as a result of the update
rule. Therefore, the value of objective function monotonically
increases during the iteration procedure and would converge
to a local optimum.

The MM framework could turn a nonsmooth problem into a
smooth one, thus could be used to solve the G2DPCA. A key
point is to find a surrogate function that could be solved by
purely analytic methods, using convenient inequalities. Some
typical inequalities are listed in [19]. The MM framework
is also referred to as “optimization transfer” [21], “auxiliary
function method” [22], or “bound optimization” [23], etc.

(14)

B. First-Order Convexity Condition

Inequalities play a central role in designing MM algorithms.
Below are some inequalities derived from the first-order con-
vexity condition that will be utilized to solve G2DPCA. Given
a convex and differentiable function f(w) defined on a real
vector space, the first-order condition of convex functions [24]
states that

Fw) > fv) + VW (w—v)

wherein the equality holds when w = v.
Lemma 1: Let w e RY, v e R?, and p > 1, then

15)

T
1wl = p[1vIP~" o signv) | w+ (1 =p)Iviy  (16)

holds and the inequality becomes equality when w = v.

Proof: If v has no zero element, i.e., all elements in v are
not zeros, then ||w||§ with p > 1 is convex and differentiable at
w = v. The objective inequality (16) could be directly derived
from the first-order convexity condition. If any element in v is
Zero, ||w||£ would not be differentiable at w = v. Fortunately,
the problem could be expanded into element form as

d d d
D lwil? = p Yy il signwi + (1 —p) Y _vilP. (17
i=1 i=1 i=1

This inequality holds if

wil?” = plvilP~'sign(vywi + (1 = p)vil” (18)

holds for all i = 1,2, ...,d. It is easy to validate that (18) is
true and the equality holds when w; = v;, no matter v; is zero
or not. This completes the proof. |

Lemma 1 relaxes ||w|;, with p > 1 to a linear function
which would become much easier to handle. When p = 1, (16)
reduces to

Iwlli > sign(v)"w. (19)
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This inequality is widely used to design solutions for robust
PCA and 2DPCA algorithms [5], [11], [17], [18].

Lemma 2: LetweRd,VeRd,w>0,v>0, and 0 <
p < 1. Specifically, w > 0 and v > 0 mean that all of the
elements in w and v are larger than zero. Then

T
Iwly < p[ v osignw)] w A =pIvI (20)

holds and the inequality becomes equality when w = v.
Proof: Since —||w||£ is convex and differentiable at w = v
when w > 0, v > 0, and 0 < p < 1, this lemma could be
directly derived from the first-order convexity condition. M
Lemma 3: Let w € R, v € R?, v has no zero element, let
0 <p <2, then

p . - p
Iwiiy < S diag (jv1"? Jw+ (1= 5 )ivi

holds and the inequality becomes equality when w = v.

Proof: Assume w has no zero element, since v also has no
zero element and 0 < p < 2, we have wow > 0, vov > 0,
and 0 < p/2 < 1. According to Lemma 2, we have

P _ p/2
Wl = w0 wil?/2

D 117 p 2
- 5[|Vov|p/2 T wvow +(1- §)||vov||gj2

p . _ P 2
= szdlag<|v o v|P/? l)w + (1 — §> lvo V||Z?2

_ ngdiag<|V|”_2>w + (1 - g) Iviz

wherein the inequality becomes equality when wow =vov.
This condition could be further guaranteed by w = v.
Therefore, the inequalities in (21) and (22) would become
equalities when w = v, satisfying our assumption that w has
no zero element.

On the other hand, if any element in w is zero, we should
expand (21) into element form in order to examine the zero
points. That is

d d d
Yol = S wip 2+ (1= 2) Y. @3
i=1 i=1 i=1

This inequality holds if

2D

(22)

il < Ewdvip =2 4 (1= 2w 24)
holds for all i = 1,2, ...,d. For any w; # 0, (24) holds and
it becomes equality when w; = v;, as discussed above. For
any w; = 0, the corresponding inequality reduces to (1 — p/2)
[vilP > 0 which is always true, but would never become equal-
ity since p < 2 and v; # 0. Therefore, (24) holds no matter w;
is zero or not, but the inequality would become equality only
when w; = v; in which case w; is not zero.

To summarize, (21) holds when v has no zero element and
0 < p < 2. When w = v, the inequality becomes equality.
This completes the proof. |

Lemma 3 relaxes ||w||§ with 0 < p < 2 to a quadratic
function which also becomes much easier to handle. When
p =1, (21) reduces to

1 ) _ 1
Iwlh = Swdiag(lv/~ )W+ SV 29)

This inequality is used to solve 2DPCALI1-S [18].
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C. Linear Optimization Problem With Lp-Norm Constraint

Let w e RY, v € RY, let P, q €[1,00] be two scalars with
1/p 4+ 1/q = 1, Holder’s inequality [25] states that

d
> viwil < IvIgIwll (26)

i=1
wherein the equality holds if and only if there exists a positive
real scalar ¢ satisfying |w;|’ = c|v;|9, i = 1,2,...,d. The
following lemma could be given based on Holder’s inequality.
Lemma 4: Let w e R4, ve R, v £0, let p, g € [1,00]
be two scalars satisfying 1/p+1/qg = 1, then the optimization
problem

maxv/w, s.t. ||w||g =1 (27)
w
has a closed-form solution
v|971 o sign(v
_ IV osign(v) 08)

Ivig™

Proof: According to Holder’s inequality in (26), we have
d

viw < Z|Viwi| < Ivliglwllp = lIvllg-
i=1

(29)

Therefore, the maximum of the objective function is
obtained when both inequalities become equalities. The first
equality holds when

sign(w;) = sign(v;), i=1,2,...,d. 30)
The second equality holds when
wilP = clvil?, i=1,2,...,d. 31)

Since v # 0, the constant ¢ could then be calculated by

S ilwilP wlp 1
= 4 T v e (32)
Yoavild o vllg  livilg
Substituting (32) into (31), we have
g\ 1/p 191
il = (clwl®)"” = (%) L )
Ivllg Iviid
(33)
Considering (30), we have
il .
wip = q_151gn(vi), i=12,...,d 34)
Ivllg

Rewriting the equations into vector form will complete this
proof. |

IV. SOLUTION OF GENERALIZED 2DPCA

With the above techniques, the solution for the G2DPCA
problem in (9) is provided as follows. Considering that the
constraint set could be either convex or nonconvex depending
on the p value, we divide the G2DPCA problem into two cases,
the same as in GPCA [13].

795

A. Case I

In case 1, p > 1 and the constraint set is convex. Then the
optimization problem of G2DPCA states
n
max D OIXiwlly, st wlb =1 (35)
i=1
where s > 1, p > 1, and w € R". This problem could be
turned into iteratively maximizing a surrogate function under
the MM framework as follows. Let w* be the projection vec-
tor at the kth step in the iteration procedure. It could be
regarded as a constant vector that is irrelevant with respect
to w. According to Lemma 1, The objective function could be
linearized as

n T n
SIXiwly = (V) we (1 =9 D IXwh s 36)
i=1 i=1

wherein

n
vE = ZX,»TUX,-WI“S : o sign(X,-wk)] 37
i=1
and the inequality (36) becomes equality when w = wk.
Denote the objective function as f(w), denote the linearized
function as g(w|wk), we have f(wX) = g(wk|wF) and f(w) >
g(w|wF) for all w, satisfying the two key conditions of the MM
framework. Therefore, g(w|w¥) is a feasible surrogate function
of f(w). According to the MM framework, the G2ZDPCA prob-
lem could be turned into iteratively maximizing the surrogate
function as follows:

k+1

W = argmaxg(w‘wk), s.t. ||w||§ =1. (38)
w

By dropping the term irrelevant to w in the surrogate
function, maximizing the surrogate function leads to a linear
optimization problem with Lp-norm constraint

k+1

T
W = argmax(vk) w, s.t. ||W||£ =1. (39)
w
Since p > 1, according to Lemma 4, its solution is
kg1 _ k
A4 o sign(v
[vepe!
q

where ¢ satisfies 1/p + 1/q = 1. The solution could be
rewritten in a two-step procedure as

uf = ‘vk‘q_l o sign(vk) (41)
Wit = “—kk (42)
[v ],

This completes the solution in case 1.

Two extreme conditions of case 1, i.e., p =1 and p = o0
are discussed as follows. When p =1, since 1/p+1/q =1,
we will have g = oo. Let j = argmaxXe[1,w] |v§‘|, ie., |v]1?| is
the largest value in |vK|. By taking the limit of (40) when p
approaches 1, we have

’ 0, i#j

(43)
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fori = 1,2,...,w. It shows that there is only one nonzero
element, 1 or —1, in the final result of w when p = 1.
That is why 2DPCALI-S should be formulated by combin-
ing L1- and L2-norm constraints together rather than using
L1-norm constraint alone. Similarly, when p approaches infin-
ity, the limit of (40) is

wit! = sign <vk> .

All elements in the final result of w should be either
1 or —1. In practice, when p is large enough, all the elements
in the projection vector tend to have very close absolute values.

When s = 1 and p = 2, G2DPCA degenerates to
2DPCA-L1. By substituting s = 1 and p = 2 into (40) we
could obtain the same solution as in [17]. It tells that the
solution in [17] could be explained from the MM viewpoint.
The solution of 2DPCALI1-S in [18] could also be explained
from the MM viewpoint though 2DPCALI-S is not exactly a
special case of G2DPCA.

(44)

B. Case 2

In case 2, 0 < p < 1 and the constraint set is nonconvex.
By applying the method of Lagrange multipliers, maximizing
the optimization problem of G2DPCA equals maximizing the
Lagrangian as follows:

n
max Y [Xowls — 2 (Iwlly — 1)
i=1

where s > 1,0 <p < 1, A > 0, and w € R". According to
Lemmas 1 and 3, the Lagrangian could be relaxed as

n
> IXiwls = (Il 1)
i=1

SRR
i=1 '

p—2 14
2L w diag ‘w"‘ w—k(l—B)HwkH FA(46)
2 2 »

(45)

wherein v* is defined in (37) and the inequality becomes
equality when w = wX. The w* in the relaxed function is
required to have no zero element which could be guaranteed
by replacing w* with WK + ¢, where ¢ is a random scalar that
is sufficiently close to zero. Let the Lagrangian be denoted
as f(w) and let the relaxed function be denoted as g(w|wk).
Again, we have f(wk) = g(wklwk) and f(w) > g(wlwk) for
all w, satisfying the two key conditions of the MM frame-
work. Therefore, g(w|w¥) is a feasible surrogate function of
the Lagrangian. According to the MM framework, maximizing
the Lagrangian could be turned into iteratively maximizing the
surrogate function as follows:

k+1

w = arg mvzélx g(w|wk> . 47

After dropping the terms irrelevant to w, we will reach the
following quadratic optimization problem:

-2
whtl — arg max s(Vk)Tw - Angdiag<‘wk ‘p >W. 48)
w
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TABLE I
ALGORITHM PROCEDURE OF G2DPCA

Input: X;,Xo, -+, X, s € [1,00), p € (0,00], .
Output: W.
Initialize W =[], X =X;,i=1,2,--- ,n.
fort=1,2,--- ,r do

Initialize k =0, 6 = 1, wY.

WO — w?

o H‘:(’Hp' 0
SO =2 XKW
while § > 10~% do
vk =37 XTI [|Xiwk|3_1 o sign(Xiwk)].
fo<p<l1
ub = |w

2—
k2P o yk,
k+1 k

u
VT e
elseif p =1
j = argmax;ep,u [vf ],
i1 [sin(h), =3,
i 0, i .
elseif p < oo
a=p/(p—1),
uk = |vk|‘I*1
k

k+1

o sign(v¥),

w

_u®
[luk]ip°
elseif p = co
whtl = sign(vFk).
end if
FER = S Xaw L
8= |fHHT— f*] /fr.
k< k+ 1.
end while
wi = wk,
W [W,Wt}.
X, :X?(I—WWT), i=1,2,--- n.
end for

Its solution is

k+1 _ S

_ 5 kr’p k
Ap

oV,

w w 49)

Since 2 —p > 0, this solution indicates that w* is no longer
required to have no zero element. Since ¢ is sufficiently close
to zero, we could treat this solution as the solution of the
problem in (48) when w* has zero elements. Considering the

constraint ||w||§ =1 and A > 0, we have

2—p
A= EH‘W"‘ o vk (50)
p P
Then the update rule is
k|2=P _ ok
w v
whtl — ||—O. (51)
i o]
P

The above solution equals the two-step procedure below

uf = ’Wklz_p o vk (52)
k
k+1 u
M T >
P

This completes the solution in case 2.

Notice that the solution in case 2 is also feasible when 1 <
p < 2 since the inequality in (46) holds when p is in the
range of (0, 2). Therefore, we have two different solutions
when 1 < p < 2. In practice, we find that the solution in
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case 1 converges much faster than the solution in case 2 when
1 < p < 2 thus being more preferred.

The above completes the solution of G2DPCA problem.
From the results in (40) and (51), it could be observed
that a closed-form solution is obtained in each iteration
for either case. The solution successfully avoids zero-
finding problems [26], learning rates [12], or extra tuning
parameters [11], [18] which are usually encountered in solv-
ing Lp-norm related algorithms. The algorithm procedure of
G2DPCA is listed in Table 1. Notice that 0 on the superscript
denotes the initialization, k or k41 on the superscript denotes
iteration number, and |w|” or the like denotes the element-wise
power of the absolute value of a vector.

V. EXPERIMENTS

Two benchmark face databases, the Olivetti Research
Laboratory (ORL) database [27] and the Face Recognition
Technology (FERET) database [28] are used in our experi-
ments. In order to evaluate the proposed G2DPCA algorithm,
we compare it with three state-of-the-art algorithms, i.e.,
2DPCALI-S [18], GPCA [13], and RSPCA [11] in the tasks of
image reconstruction and classification on the two databases.
GPCA and RSPCA are modified to be the 1-D counter-
parts of G2DPCA and 2DPCALI-S, respectively in order to
make a fair comparison. For G2DPCA and GPCA, we search
the optimal parameter set from s = [1.0:0.1:3.0] and p =
[0.9:0.1:3.0]. A wider range has also been tried, but no bet-
ter reconstruction or classification results could be found. For
2DPCALI-S and RSPCA, a parameter p relates to the A in (7)
via A = 1077 is tuned, consistent with [18]. When p is small
enough, 2DPCALI1-S approximates to G2DPCA with s = 1
and p = 1, RSPCA approximates to GPCA with s = 1 and
p = 1; when p is large enough, 2DPCALI-S approximates to
2DPCA-L1, RSPCA approximates to PCA-L1. These extreme
conditions guarantee that the optimal p value in 2DPCALI1-S
or RSPCA could be located in a finite range. Therefore, we
search for the optimal p value from [—3.0:0.1:3.0] in our
experiments.

As for initialization, the multistart method [29] is widely
suggested to be an efficient method for finding a good locally
optimal solution in PCA-based algorithms [5], [11]-[13]. That
is, random initializations are tried multiple times and the ini-
tialization with the maximal objective function value is finally
chosen. In this paper, however, we directly initialize the pro-
jection vectors of the 1-D algorithms by the corresponding
components of PCA, and initialize the projection vectors of the
2-D algorithms by the corresponding components of 2DPCA.
This method makes the most of the relationships between
these algorithms, therefore it is expected to find a good locally
optimal solution.

Major source codes have been made publicly available at
https://github.com/yuzhounh/G2DPCA.

A. ORL Face Database

The ORL face database [27] contains 400 images from
40 subjects, ten images per subject. The images are taken
with tolerances for different facial expressions, different rota-
tion angles, and different scaling ratios. The image size
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Fig. 1. Sample images of the ORL face database.
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Fig. 2. Reconstruction errors of G2DPCA in three special cases on the ORL
database. The (s, p) pairs for the three cases are shown in the legend.

is 112 x 92. We further resize the images to 56 x 46 to reduce
the computational time. Fig. 1 shows some sample images
from this database.

To evaluate the reconstruction performance of G2DPCA, we
conduct an experiment on a polluted ORL database, similar as
in [5], [17], and [18]. Specifically, 20% of the total 400 images
are randomly selected and occluded with a rectangular noise
whose size is at least 20 x 20, locating at a random position.
The noise consists of random black and white dots. Let W
be the projection matrix trained on the whole polluted ORL
database, let Z1,Z, ..., Z,, be m (m = 320) clean images
which are mean-centered, then the average reconstruction error
of G2DPCA is defined as

1 m
LS - ww),

i=1

(54)

Fig. 2 shows the reconstruction errors of G2DPCA in three
special cases with different number of extracted features.
Among the three cases, G2DPCA with s = 2 and p = 2
corresponds to traditional 2DPCA, G2DPCA with s = 1 and
p = 2 corresponds to 2DPCA-L1. From the figure, both recon-
struction results of 2DPCA and 2DPCA-L1 are much better
than that of G2DPCA with s = 2 and p = 1. When the
feature number is larger than seven, the reconstruction error
of 2DPCA-L1 is lower than that of 2DPCA, consistent with
the results in [17] and [18]. The figure shows that applying
LI-norm on the objective function of 2DPCA would improve
its reconstruction performance. As an illustration, the recon-
structed images of the three special cases on two sample
images are shown in Fig. 3.
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Fig. 3. Reconstructed images of G2DPCA in three special cases on two
sample images from the polluted ORL database. The first column is the images
to be reconstructed. One image has random noises while the other does not.
The following three columns are the reconstructed images by using the first ten
projection vectors of G2DPCA wherein the (s, p) pairs are set to be (1, 2),
(2,2), and (2, 1) in order. The last column shows the original images for
comparison.
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Fig. 4.  Reconstruction errors of G2DPCA with s =
p =10.9:0.1:3.0] on the ORL database.

[1.0:0.1:3.0] and

Then, we proceed to compare the reconstruction per-
formance of G2DPCA with other three algorithms, i.e.,
2DPCALI-S, GPCA, and RSPCA. The average reconstruc-
tion errors of the three algorithms could be defined similarly.
By averaging the reconstruction errors with different feature
numbers which are in the range of [1,30], we obtain the
results in Figs. 4-6. From the results, the reconstruction errors
of G2DPCA and GPCA are relatively stable with different
s values, but are greatly affected by various p values. Both
results of 2DPCALI-S and RSPCA show that the lowest
reconstruction error is obtained when p is set to be a large
value in which case 2DPCALI-S approximates to 2DPCA-L1
and RSPCA approximates to PCA-L1.

The lowest reconstruction errors and corresponding param-
eters of the four algorithms are listed in Table II. As special
cases of G2DPCA and GPCA, the results of 2DPCA-L1,
2DPCA, PCA-L1, and PCA are also listed in the table for com-
parison. With tolerances for random errors, we could conclude
that the best reconstruction performances of G2DPCA and
2DPCALI-S are achieved when they reduce to 2DPCA-LI,
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Fig. 5. Reconstruction errors of GPCA with s =
p =[0.9:0.1:3.0] on the ORL database.
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Fig. o©. Reconstruction errors of 2DPCALI-S and RSPCA with
p =[—3.0:0.1:3.0] on the ORL database.

TABLE II
RECONSTRUCTION ERRORS OF EIGHT ALGORITHMS
ON THE ORL DATABASE

Algorithms Optimal parameters  Reconstruction error (X 103)
G2DPCA s=1.0,p=2.0 0.5624
2DPCALI-S p=29 0.5630
2DPCA-L1 - 0.5624
2DPCA - 0.6583
GPCA s=11,p=20 1.2184
RSPCA p=3.0 1.2222
PCA-L1 - 1.2220
PCA - 1.3036

and the best reconstruction performances of GPCA and
RSPCA are achieved when they reduce to PCA-L1.
Apparently, the reconstruction performances of 2-D algo-
rithms are much better than those of 1-D algorithms when the
same number of features are extracted. However, the mean-
ing of this comparison is limited concerning the differences
between the two categories of algorithms. Among these dif-
ferences, a major one is that the maximal number of features
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Fig. 7. Classification accuracies of G2DPCA with s = [1.0:0.1:3.0] and
p =10.9:0.1:3.0] on the ORL database.
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Fig. 8. Classification accuracies of GPCA with s = [1.0:0.1:3.0] and

p =10.9:0.1:3.0] on the ORL database.

that could be extracted by 1-D algorithms is much larger than
that could be extracted by 2-D algorithms. As a result, the
same number of 1-D components account for much less vari-
ance than 2-D components. Therefore, it is unsurprising that
the reconstruction errors of 2-D algorithms are much lower
than those of 1-D algorithms.

Then, we proceed to compare the classification performance
of G2DPCA with other three algorithms on the ORL database.
These algorithms are employed to extract features, then the
nearest neighbor classifier is applied to do classification. In
the ORL database, we randomly choose five images from each
subject for testing and use the remaining images for training.
The procedure is repeated ten times and the average clas-
sification accuracy is recorded. The classification accuracies
with feature numbers in the range of [1, 30] are further aver-
aged, then the final results are reported, as shown in Figs. 7-9.
From the results, the accuracies of G2DPCA and GPCA are
insensitive with respect to s values, but are greatly affected
by p values. The accuracy of 2DPCALI1-S peaks at p = 1.7.
The accuracy of RSPCA generally increases with p value and
becomes stable when p is large enough.
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Fig. 9. Classification accuracies of 2DPCALI-S and RSPCA with
p =[—3.0:0.1:3.0] on the ORL database.

TABLE III
CLASSIFICATION ACCURACIES OF EIGHT ALGORITHMS
ON THE ORL DATABASE

Algorithms Optimal parameters  Accuracy
G2DPCA s=29,p=15 0.9479
2DPCALI-S p=1.7 0.9467
2DPCA-L1 - 0.9436
2DPCA - 0.9436
GPCA s=23,p=20 0.8521
RSPCA p=24 0.8498
PCA-L1 - 0.8493
PCA - 0.8515
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Fig. 10. Classification accuracies of G2DPCA, 2DPCALI-S, GPCA, and

RSPCA with different feature numbers on the ORL database when respective
optimal parameters are applied.

The highest classification accuracies and corresponding
parameters of the four algorithms are listed in Table III, includ-
ing the results of 2DPCA-L1, 2DPCA, PCA-L1, and PCA for
comparison. Fig. 10 shows the detailed accuracy results with
different feature numbers when the optimal parameters are
applied in the four algorithms. From the results, the accuracy
of G2DPCA is slightly higher than that of 2DPCALI1-S, and
the accuracy of GPCA is slightly higher than that of RSPCA.
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Fig. 11. Sparse rates of the first 30 projection vectors of G2DPCA with

s =2.9 and p = 1.5 in ten subsets of the ORL database which are randomly
generated.

It also demonstrates that applying Lp-norm on the objective
and constraint functions of traditional 2DPCA could improve
its classification performance.

The optimal classification performances of the 2-D algo-
rithms are much better than those of the 1-D algorithms
since the variance explained by each 2-D component is much
larger than that explained by corresponding 1-D component,
as discussed before.

Then the sparsity of the projection vectors of G2DPCA
with optimal parameters, i.e., s = 2.9 and p = 1.5 are
studied. Define sparse rate of a vector as the ratio of zero
elements in that vector. In practice, elements with absolute
values smaller than 10~ are treated as zeros. The sparse rates
of the first 30 projection vectors in the above image classi-
fication task are calculated, as shown in Fig. 11. There are
ten random repetitions. From the results, the projection vec-
tors are slightly sparse which indicates that some irrelevant
features are eliminated by G2DPCA and sparsity is helpful in
image classification.

B. FERET Face Database

To further examine the performance of G2DPCA in image
reconstruction and classification, we conduct experiments on a
subset of the FERET face database [28], similar to the experi-
ments on the ORL database. The FERET database contains
1400 images from 200 subjects, seven images per subject.
The images are taken with different facial expressions and
view angles. The image size is 80 x 80. We further resize the
images to 40 x 40 to reduce the computational time. Fig. 12
shows some sample images from this database.

Fig. 13 shows the reconstruction errors of G2DPCA in the
three special cases with different feature numbers. Fig. 14
shows the reconstructed images of G2DPCA in three special
cases on two sample images. From the result, the reconstruc-
tion error of 2DPCA-L1 is lower than that of 2DPCA when
the feature number is larger than five. Also, both reconstruc-
tion errors of 2DPCA-L1 and 2DPCA are much lower than
that of G2DPCA with s =2 and p = 1.
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Fig. 12.  Sample images of the FERET face database.

1400

1200}

1000}

800

600

Reconstruction error

400

2001

0 5 10 15 20 25 30
Feature number

Fig. 13.  Reconstruction errors of G2DPCA in three special cases on the
FERET database. The (s, p) pairs for the three cases are shown in the legend.

Fig. 14. Reconstructed images of G2DPCA in three special cases on two
sample images from the polluted FERET database. The first column is the
images to be reconstructed. One image has random noises while the other
does not. The following three columns are the reconstructed images by using
the first ten projection vectors of G2DPCA wherein the (s, p) pairs are set
to be (1,2), (2,2), and (2, 1) in order. The last column shows the original
images for comparison.

To compare the reconstruction performance of G2DPCA
with other three algorithms, we conduct an experiment on a
polluted FERET database. Similarly, 20% of the total 1400
images are randomly selected and occluded with a rectan-
gular noise whose size is at least 20 x 20, locating at a
random position. The noise consists of random black and
white dots. The reconstruction errors of the four algorithms
are shown in Figs. 15-17. From the results, the reconstruction
errors of G2DPCA and GPCA are relatively stable with dif-
ferent s values, but are greatly affected by various p values.
Both results of 2DPCAL1-S and RSPCA show that the low-
est reconstruction error is obtained when p is large enough
in which case 2DPCALI-S approximates to 2DPCA-L1 and
RSPCA approximates to PCA-LI.
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Fig. 15.  Reconstruction errors of G2DPCA with s = [1.0:0.1:3.0] and
p =[0.9:0.1:3.0] on the FERET database.
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Fig. 16. Reconstruction errors of GPCA with s = [1.0:0.1:3.0] and

p =[0.9:0.1:3.0] on the FERET database.

The lowest reconstruction errors and corresponding param-
eters of the four algorithms are listed in Table IV, including
the results of 2DPCA-L1, 2DPCA, PCA-L1, and PCA for
comparison. With tolerances for random errors, the results
demonstrate that the best reconstruction performances of
G2DPCA and 2DPCALI-S are achieved when they reduce
to 2DPCA-L1, and the best reconstruction performances of
GPCA and RSPCA are achieved when they reduce to PCA-LI,
the same as what we have concluded from the experimental
results on the ORL database.

To compare the classification performance of G2ZDPCA with
other three algorithms on the FERET database, we randomly
choose four images from each subject for testing and use
the remaining images for training. The procedure is repeated
ten times. The average classification accuracies are shown in
Figs. 18-20. From the figures, the accuracies of G2DPCA
and GPCA are generally sensitive to p values but insensi-
tive to s values. And the best classification performances of
2DPCALI-S and RSPCA are achieved when 0 < p < 1.
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Fig. 17. Reconstruction errors of 2DPCALI-S and RSPCA with
p =[—3.0:0.1:3.0] on the FERET database.

TABLE IV
RECONSTRUCTION ERRORS OF EIGHT ALGORITHMS
ON THE FERET DATABASE

Algorithms Optimal parameters  Reconstruction error (x10%)
G2DPCA s=1.0,p=20 0.2985
2DPCALI-S p=2.9 0.2987
2DPCA-L1 - 0.2985
2DPCA - 0.4072
GPCA s=11,p=20 0.6217
RSPCA p=3.0 0.6223
PCA-L1 - 0.6219
PCA - 0.6538
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Fig. 18. Classification accuracies of G2DPCA with s = [1.0:0.1:3.0] and

p =10.9:0.1:3.0] on the FERET database.

The highest classification accuracies and corresponding
parameters of the four algorithms are listed in Table V, includ-
ing the results of 2DPCA-L1, 2DPCA, PCA-LI, and PCA for
comparison. Fig. 21 shows the classification accuracies of the
four algorithms with different feature numbers when respective
optimal parameters are applied. From the results, the classi-
fication performance of G2DPCA is much better than that of
2DPCALI-S, and the classification performance of GPCA is
worse than that of RSPCA. The result also demonstrates that



802

1.4 1.9 24 29
s

Fig. 19.  Classification accuracies of GPCA with s = [1.0:0.1:3.0] and
p =10.9:0.1:3.0] on the FERET database.
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Fig. 20. Classification accuracies of 2DPCALI-S and RSPCA with

p =[—3.0:0.1:3.0] on the FERET database.

TABLE V
CLASSIFICATION ACCURACIES OF EIGHT ALGORITHMS
ON THE FERET DATABASE

Algorithms Optimal parameters  Accuracy
G2DPCA s=19,p=22 0.6484
2DPCAL1-S p=04 0.4458
2DPCA-L1 - 0.3985
2DPCA - 0.3983
GPCA s=13,p=20 0.2417
RSPCA p=0.2 0.2763
PCA-L1 - 0.2415
PCA - 0.2406

applying Lp-norm both in objective and constraint functions of
2DPCA could greatly improve its classification performance.
However, the same operation on PCA just slightly improves
its classification performance. The best classification perfor-
mance among the 1-D algorithms on the FERET database is
achieved by RSPCA.

As for the sparsity of the projection vectors of G2DPCA
with optimal parameters, all of the results turn out to be dense
since the optimal p value is larger than 2.0.
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Fig. 21. Classification accuracies of G2DPCA, 2DPCALI-S, GPCA,
and RSPCA with different feature numbers on the FERET database when
respective optimal tuning parameters are applied.

VI. CONCLUSION

A general 2DPCA algorithm based on Lp-norm, called
G2DPCA is proposed for image analysis in this paper. It
applies Lp-norm both in objective and constraint functions
of conventional 2DPCA. An iterative algorithm is designed
to solve the optimization problem of G2DPCA under the MM
framework, and a closed-form solution is obtained in each iter-
ation. Then a deflating scheme is employed to extract multiple
projection vectors. The solution of G2DPCA is guaranteed to
be locally optimal.

Two face databases, i.e., ORL and FERET are employed
in the experiments regarding image reconstruction and classi-
fication. Generally speaking, all results from the experiments
show that G2DPCA is insensitive to s value but sensitive
to p value. In task of image reconstruction, the optimal
reconstruction performance of G2DPCA is achieved when
it reduces to 2DPCA-LI. In task of image classification, the
optimal (s, p) pair differs on different databases, (2.9, 1.5)
for the ORL database, and (1.9, 2.2) for the FERET database,
respectively. Our results demonstrate the superiority of
G2DPCA in image classification over seven existing algo-
rithms, ie., 2DPCALI-S, 2DPCA-L1, 2DPCA, GPCA,
RSPCA, PCA-L1, and PCA. However, how to determine the
optimal (s,p) pair theoretically remains to be an unsolved
problem. Another unsolved problem is to find the locally
optimal solution for G2DPCA with 0 < s < 1 and p > 0
if it exists. Additionally, it is worthwhile to extend some
L1-norm based subspace learning algorithms such as linear
discriminant analysis with L1-norm (LDA-L1) [30], [31] and
discriminant locality preserving projections with LI-norm
(DLPP-L1) [32] to corresponding Lp-norm cases.

Some questions that remain unclear concerning the experi-
mental results are listed below. First, the accuracy by some
2-D algorithms is decreasing with feature number on the
FERET database, as shown in Fig. 21. This is strange. Second,
on the FERET database, the optimal classification perfor-
mance of G2DPCA is better than that of 2DPCALI1-S, but
the optimal classification performance of GPCA is worse than
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that of RSPCA. Considering that GPCA and RSPCA are the
1-D counterparts of G2DPCA and 2DPCALI1-S, respectively,
this result is difficult to explain. Third, among the four
2-D algorithms, i.e., G2DPCA, 2DPCALI1-S, 2DPCA-L1, and
2DPCA, the best reconstruction performance is obtained by
2DPCA-L1 or by G2DPCA and 2DPCALI1-S when they
reduce to 2DPCA-L1; among the four 1-D algorithms, i.e.,
GPCA, RSPCA, PCA-L1, and PCA, the best reconstruc-
tion performance is obtained by PCA-L1 or by GPCA and
RSPCA when they reduce to PCA-LI. It is difficult to explain
why G2DPCA, 2DPCALI-S, GPCA, and RSPCA could not
achieve better reconstruction performances considering the
flexibility of their tuning parameters. These questions might
be discussed in the future work when the performances of
these algorithms on more databases are examined and when we
know more about the intrinsic properties of these algorithms.
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