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Abstract. This paper utilizes a supervoxel method called simple linear iterative
clustering (SLIC) to parcellate whole brain into functional subunits using
resting-state fMRI data. The parcellation algorithm is directly applied on the
resting-state fMRI time series without feature extraction, and the parcellation is
conducted on the individual subject level. In order to obtain parcellations with
multiple granularities, we vary the cluster number in a wide range. To
demonstrate the reasonability of the proposed approach, we compare it with a
state-of-the-art whole brain parcellation approach, i.e., the normalized cuts
(Ncut) approach. The experimental results show that the proposed approach
achieves satisfying performances in terms of spatial contiguity, functional
homogeneity and reproducibility. The proposed approach could be used to
generate individualized brain atlases for applications such as personalized
medicine.
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1 Introduction

Since the manifestation of brain functional connectivity [1], studies have shown that
the brain could be characterized as a network. To construct the brain network, an atlas
should be defined in prior. It is usually chosen from the standardized atlases such as the
automated anatomical labeling (AAL) atlas [2] and the Harvard-Oxford (HO) atlas.
However, these atlases are generated based on structural criteria, and cannot guarantee
the functional homogeneity of the fMRI time series in each node. Parcellating the brain
based on resting-state functional connectivity (RSFC) could avoid the problem, and has
attracted exploding attentions in recent years.

The majority of studies concerning RSFC-based parcellation are focusing on a
region of interest (ROI) rather than the whole brain. Only a few studies [3–7] generate
whole brain atlases. Among them, the normalized cuts (Ncut) [8, 9] is one of the most
successful approaches and being widely applied.
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This paper employs a supervoxel method called simple linear iterative clustering
(SLIC) [10, 11] to parcellate whole brain for individuals. By varying the initialized
cluster number, we generate brain atlases with multiple granularities. The Ncut
approach is also applied to parcellate the same dataset. Finally, we make a comparison
between the two kinds of parcellation approaches under different evaluation metrics.

2 Materials and Methods

2.1 Subjects

In the study, we use data from the 1000 Functional Connectomes Project (http://www.
nitrc.org/projects/fcon_1000/) [12] that is publicly available online. Specifically, we
use the structural and resting-state fMRI data acquired from 18 subjects in the Beijing_
Zang dataset. The demographics of the subjects could be found online. The dataset is
preprocessed by the Data Processing Assistant for Resting-State fMRI (DPARSF) [13].
The preprocessing steps include: discarding the first ten volumes, slice timing cor-
rection, motion correction, coregistration, segmenting the structural images, normal-
izing the functional images to the Montreal Neurological Institute (MNI) space at
4 × 4 × 4 mm3 resolution; smoothing with a 6 mm FWHM Gaussian kernel; linear
detrending; bandpass filtering with passband 0.01–0.08 Hz; regressing out nuisance
covariates. No subject is excluded due to excessive head motion under the excluding
criteria 2.0 mm and 2.0°. The global signal regression (GSR) is not included since its
effect is still controversial.

2.2 Simple Linear Iterative Clustering (SLIC)

SLIC could be used as a superpixel method [10] or a supervoxel method [11], which is
determined by whether the target image is 2D or 3D. The common idea is to separate
an image into perceptually meaningful patches. SLIC is actually an adaptation of
K-means. Two important differences between SLIC and K-means are that SLIC limits
the search space to the neighborhood of a cluster center and creates a unified distance
by integrating the intensity distance and the spatial distance. SLIC has become very
popular in the field of computer vision in recent years due to its simplicity, effec-
tiveness and good clustering performance. In this study, we apply it on resting-state
fMRI data to carry out whole brain parcellation.

The algorithm procedure of SLIC is stated as follows. To parcellate the brain into K
clusters, we first initialize K cluster centers periodically in the 3D space, as shown in
Fig. 1A. Assume that the number of voxels in the gray matter is N. Then the average
length of a supervoxel is S ¼ ffiffiffiffiffiffiffiffiffiffi

N=K3
p

. For each voxel in the 3S� 3S� 3S region
around a cluster center, a distance between the voxel and the cluster center is calcu-
lated. This distance is assigned to the voxel as a measure to judge which cluster it
should belong to. If the distance decreases comparing to the result in the previous
iteration, then associate the voxel to the current cluster center. This procedure is
repeated for all cluster centers. Once completed, each cluster center is updated to be a
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vector formed by averaging the fMRI time series and coordinates of voxels in that
cluster. The above assignment and update steps are repeated until the change of the
cluster centers is lower than a certain threshold. The resultant clusters or supervoxels
make up the final brain atlas. The algorithm procedure is summarized in Table 1. An
illustration of the initializing and searching steps is shown in Fig. 1.

How to define the unified distance is very important in the clustering procedure. For
the ith voxel, assume that its fMRI time series is vi and its coordinates in the MNI space
is ui, i ¼ 1; 2; . . .;N, then the unified distance between two voxels could be defined as

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi � vj

�� ��2
2

m2 þ ui � uj
�� ��2

2

s2
;

s
ð1Þ

where m and S are two tuning parameters which normalize the functional distance and
the spatial distance respectively. The parameter m could be chosen around the median
of all functional distances, and we fix it to be 40 empirically. The parameter S is fixed
to be the average length of the supervoxels. Though the algorithm in [11] and in this
study are targeting at parcellating the 3D space, a major difference exists between them.
That is, the functional distance is calculated between the image intensity of two voxels
in [11] while it is calculated between the fMRI time series of two voxels in this study.
Since the functional distance is incorporated in the clustering procedure, the proposed
approach could be regarded as a RSFC-based parcellation approach.

Table 1. The algorithm procedure of the SLIC approach
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We choose Ncut as the competing approach because it has achieved great success
in whole brain parcellation. For that approach, the definition of the individual subject
level weight matrix and the implementation of the multiclass spectral clustering
(MSC) algorithm [14] are kept the same as in [4] in order to make a fair comparison.
Only the individual subject level parcellations of the two approaches are generated and
compared in this study. A comparison of the pipeline of the Ncut approach and the
SLIC approach is shown in Fig. 2. Without confusion, we use MSC to denote the
clustering algorithm that operates after extracting features by Ncut. Since SLIC is
directly applied on the fMRI time series, it only needs a single step to generate
parcellations.

Fig. 1. Illustration of the SLIC approach on whole brain parcellation. (A) Initializing the cluster
centers periodically in the 3D space. The three straight lines denote the xyz-axis system. (B) For
each cluster, SLIC searches in the 3S� 3S� 3S region around its center to update the labels of
all voxels in the search space. A unified distance is calculated between each voxel and the cluster
center to judge whether the voxel should belong the cluster. The unified distance is composed of
the functional distance and the spatial distance, wherein the functional distance is calculated
between the fMRI time series of two voxels. Note that the supervoxel is unnecessary to be a cube.
It is displayed as a cube for simplicity.
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2.3 Evaluation Metrics

The clusters in a brain parcellation result should be spatially contiguous, functionally
homogeneous and reproducible [4, 5]. For spatial contiguity, we treat the spatially
discrete regions that belong to the same cluster as separate clusters and count the
increased cluster number. The increased cluster number is referred to as the spatial
discontiguity index. For functional homogeneity, we first average similarities across all
pairs of voxels within a cluster and then average the obtained results across clusters.
Assume that the voxel number in the kth cluster Ck is nk, k ¼ 1; 2; . . .;K. The similarity
between voxels i and j is sij, i; j ¼ 1; 2; . . .;N. The average similarity within the kth
cluster is

a kð Þ ¼ 1
nkðnk � 1Þ

X
i;j2Ck ;i6¼j

sij: ð2Þ

Then the functional homogeneity of the brain atlas is

1
K

XK

k¼1
aðkÞ: ð3Þ

To avoid circular analysis, we train an atlas on one subject and calculate the
functional homogeneity based on this atlas and the resting-state fMRI data of other
subjects. For reproducibility, we calculate the Dice coefficient between different brain
atlases that are generated from different subjects. As a prior step, we should calculate an
adjacency matrix for each brain atlas. An adjacency matrix is A a N � N symmetric
matrix that is calculated by setting its elements aij is set to be one if voxels i and j
belong to the same cluster in the brain atlas, and zero otherwise. For two adjacency
matrices A and B derived from two atlases, the Dice coefficient between them is

2 A \Bj j
Aj j þ Bj j ; ð4Þ

where �j j denotes the number of ones in an adjacency matrix, A \B denotes the union
of the two adjacency matrices.

Fig. 2. The pipeline of the two parcellation approaches. (A) Ncut. (B) SLIC.
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3 Experimental Results

In the experiment, we use the fMRI data from 18 subjects. The Ncut approach and the
SLIC approach are employed to do parcellation. Then the parcellation results are
compared under difference evaluation metrics. The initialized cluster number is set to
be [50:50:1000] in order to generate parcellations with multiple granularities. For each
subject, each parcellation approach and each cluster number, one atlas is obtained.
Figure 3 shows the atlases when the first subject is parcellated into 100, 300 and 800
clusters by Ncut and SLIC.

For a brain parcellation approach, the actual cluster number should be close to the
initialized cluster number in order to obtain the granularity we have expected. By
subtracting the initialized cluster number from the average actual cluster number for
each parcellation approach, we could obtain their differences, as shown in Fig. 4A. The
results show that SLIC outperforms Ncut in approximating the initialized cluster
number.

To evaluate spatial contiguity, we calculate the spatial discontiguity index for each
brain atlas and then average the results across subjects, as shown in Fig. 4B. A smaller
result indicates that the brain atlases are more spatially contiguous. Ncut outperforms
SLIC in spatial contiguity. The reason is that Ncut incorporates spatial constraint in the
parcellation procedure that could guarantee to obtain spatially contiguous clusters [4].
The spatial constraint is a strong spatial structure, which weakens the influences of data
structure and renders the generated atlases to have comparable shapes and sizes, as
displayed in Fig. 3. This brings quite a lot of doubts to the Ncut approach [3, 5].
For SLIC, the spatial discontiguity index generally decreases with increasing cluster
number. When the actual cluster number is larger than 200, there are only few spatially
discontiguous regions in each atlas, which is also satisfactory.

To evaluate functional homogeneity, we train a brain atlas on one subject and
calculate homogeneity based on this atlas and the resting-state fMRI data of the
remaining subjects. The homogeneity results of each parcellation approach and each
cluster number are averaged, as shown in Fig. 4C. The curves correspond to the two

Fig. 3. Illustration of the atlases generated by Ncut and SLIC. Each atlas is represented by its
three orthogonal cross sections. The initialized cluster numbers are 100, 300 and 800 from left to
right. The colormap for each atlas is randomly generated, and each color represents a cluster.
(Color figure online)
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approaches are very close, which indicates that the two approaches obtain similar
homogeneity results. Homogeneity increases with increasing cluster number. This is
consistent with [4, 5, 15].

To evaluate reproducibility, we randomly choose two from the eighteen subjects
and calculate Dice coefficient between their corresponding atlases when the parcella-
tion approach and the initialized cluster number are fixed. This procedure is repeated
for twenty times. The twenty results are averaged to yield a single Dice coefficient for
each parcellation approach and each cluster number. The averaged results are shown in
Fig. 4D. The Dice coefficients of SLIC are higher than the Dice coefficients of Ncut
except when the initialized cluster number is 50. The result demonstrates that the
atlases generated by SLIC have higher reproducibility across individuals than the
atlases generated by Ncut. The Dice coefficient of Ncut decreases with increasing
cluster number, which is consistent with [3–5]

For reproducibility, the source codes of this study have been made publicly
available at https://github.com/yuzhounh/SLIC_individual.

Fig. 4. The results of different evaluation metrics for Ncut and SLIC. (A) The difference
between the initialized cluster number and the actual cluster number. (B) Spatial discontiguity
index. (C) Functional homogeneity. (D) Dice coefficient. The first metric is plotted against the
initialized cluster number while the other three metrics are plotted against the actual cluster
number that is denoted by K.
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4 Conclusion and Future Directions

This paper applies SLIC to generated individualized brain atlases. The algorithm is
directly applied on resting-state fMRI time series without feature extraction in prior.
The experimental results show that the proposed approach obtains satisfying results in
terms of spatial contiguity and functional homogeneity, and outperforms Ncut in terms
of reproducibility. It demonstrates the rationality of the proposed approach. For future
directions, the individualized brain atlas might find its application in fields such as
personalized medicine [16]. In addition, the proposed approach has the potential to be
extended from individual subject level to group level as the Ncut approach [4].
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