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Abstract. The previous neuroimaging studies have found that two
major cognitive sub-processes, action perception and mental inference,
participate in understanding others’ action intention, but it is unclear
that the role of action observation network (AON) for mentalizing net-
work (MZN) of intention inference. To provide direct causal evidence
about the relationship between the two systems, this EEG study adopted
Granger causality method to detect the circuit of directed information
transfer from action perception to intention inference process during
a “hand-cup interaction” observation task with two types of actions,
i.e., usual intention-oriented action and unintelligible action. The graph-
theoretical results of causal connectivity network show that left-lateral
posterior parietal-occipital brain area acts as “effect” nodes in AON dur-
ing action perception period but plays the role of “cause” nodes in MZN;,
especially for understanding other’s unintelligible action that requires
higher cognitive function for mentalizing inference. From the evidence,
this study suggests that left-lateral parietal-occipital brain area can be
viewed as a hub of internodal directed connection transition from AON
to MZN, so that the two systems could cooperate with each other by
means of temporal reception and transmission of perceptional informa-
tion to judge other’s actual intention.
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1 Introduction

Understanding others’ intention from their actions is an essential ability of the
human living in the social world [1]. The past studies have identified two stages
are highly involved in action intention understanding process of the brain. The
first stage is direct perception, which maps the visual information of actions onto
memory representation in one’s memory system. This process is considered to
activate an action observation network (AON) composed of mirror neuron areas.
The subsequent stage is intention inference, which judges others’ mental state or
motivation from observed actions. The process is considered to rely on a men-
talizing network (MZN) consisting of frontoparietal system [2—4]. The previous
neuroimaging studies have detected significant activation of the both networks
in action intention understanding tasks, but they have not achieved a common
conclusion about the functional relevance between the two systems. Specifically,
the role of AON is unclear in the stage of intention inference while the MZN
is activated. Some studies suggest that the mirror neuron areas should provide
sensorimotor information to mentalizing areas for inferring others’ intentions
correctly. By contrast, some studies think that the mirror and the mentalizing
systems are probably independent of each other, because concurrent activation
of the two systems was rarely detected in action intention understanding tasks
[6—7]. Therefore, more direct causal evidence is needed to reveal how the two sys-
tems cooperate in action intention understanding process [8,9]. In this electroen-
cephalogram (EEG) study, we used a “hand-cup interaction” action observation
task with two types of intentions to test the interactive relationship between
AON and MZN. The timing and localization of mirror responses and mental-
ization were determined by event-related potential (ERP) and source trace. In
the time intervals of task-evoked ERPs, EEG channel-level Granger causality
(GC) was computed and directed causal network was constructed to capture
the change of directed information flow among key brain regions. Furthermore,
graph-theoretical measurements of directed networks were discriminated to dis-
cover identifiable EEG channels and features in understanding others’ different
action intentions.

2 DMaterials and Methods

2.1 EEG Experiment and Data Prepocessing

The EEG experiment was approved by the Academic Committee of the Research
Center for Learning Science, Southeast University, China. EEG data were
recorded by a 60-channel Neuroscan 10-20 system with sampling rate at 500 Hz.
In the EEG experiment, 30 college students were recruited to perform a “hand-
cup interaction” observation task, in which 24 subjects’ effective data were
retained to be used in further data analysis, including 10 males and 14 females
aged 22.4 £+ 2.3 (mean £ SD).
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The task was composed of two conditions used for comparing brain activities
induced by different action intention types. As shown in Fig. 1A, the actions pre-
sented in the experiment include a typical intention-oriented action, i.e., grasping
a cup for using it (Ug), and an unintelligible action, i.e., touching a cup without
clear purpose (Sc). There were 98 trials for each condition, thus resulting in 196
trials in total. Figure 1B shows the timeline of sequential stimuli of each trial.
At first, the symbol “+” at the center of screen was presented for 150 ms. Then
a cup was shown for 500 ms. After that, the screen presented a hand interacting
with the cup for 2000 ms. Meanwhile, subjects needed to judge the intention
in their brains without pressing any button. At the end, the symbol “+” was
presented again with a random time length, which was the beginning of next
trial.

A B

1000ms

500ms

0 Time interval of
-200ms an epoch

Fig. 1. Experimental paradigm of “hand-cup interaction” observation task. (A) a hand
grasping a cup for using it (Ug); a hand touching a cup without any obvious purpose
(Sc). (B) Timeline of stimulus presentation and time interval of an epoch of EEG data.

The raw EEG signals were preprocessed by Scan 4.3 software. After extract-
ing the trials with the epoch of 1200 ms (200-ms pre-stimulus and 1000-ms post-
stimulus intervals), baseline correction, artifact rejection and low-pass filtering
(1-60 Hz) were conducted subsequently. As a result, 1146 and 1139 trials were
retained for Ug and Sc task conditions respectively, of which 36-68 trials were
retained for each subject under each condition.

2.2 Source Estimation of ERP Difference Wave

According to task-evoked event-related potential (ERP) responses, difference
waves between “Ug” and “Sc” conditions were calculated to isolate the brain
activities of interest. Based on the topology of difference waveforms with global
field potential (GFP) peaks, the cortical sources were estimated by using Brain-
storm source estimation procedure (http://neuroimage.usc.edu/brainstorm). In
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the procedure, a forward model was created by the symmetric Boundary Ele-
ment Model in OpenMEEG (http://openmeeg.github.io) toolbox [10]. The noise
of sensors was removed by the noise covariance matrix of the signals in pre-
stimulus interval. After that, an inverse kernel matrix was produced by the
forward model and standardized Low Resolution Brain Electromagnetic Tomog-
raphy (SLORETA) algorithm. As a result, the cortical sources of difference waves
between the ERPs of “Ug” and “Sc” conditions were estimated by means of the
inverse kernel matrix, which were then mapped onto a distributed cortex source
model composed of 15,002 elementary current dipoles.

2.3 Directed Graph Analysis of Effective Connectivity

To identify how action perception and intention inference processes modulate
intraregional influence among crucial brain areas, directed connectivity networks
were constructed by calculating GC between each pair of EEG signals.

For two simultaneously measured signals z(t) and y(t), if one can predict the
first signal better by incorporating the past information from the second signal
than using only information from the first one, then the second signal can be
called causal to the first one [11]. Clive Granger gave a mathematical formulation
of this concept by arguing that when z is influencing y, then if you add past
values of (1) to the regression of y(t), and improvement on the prediction will
be obtained.

For the univariate autoregressive model (AR),

2(n) = 32k_100 k(0 — k) + ua(n) (1)

y(n) = 3k—rayry(n — k) + uy(n) (2)

where a; ; are the model parameters (coefficients usually estimated by least
square method), p is the order of the AR model and w; are the residuals asso-
ciated to the model. Here, the prediction of each signal (z and y) is performed
only by its own past (T and § respectively). The variances of the residuals are
denoted by

Vige = var () 3)
Vylg = var(uy) (4)

For the bivariate AR,
a(n) = 3271 aefe k(0 — k) + 2271 aa)y 1y (n — k) + tzy(n) (5)
y(n) = 301 ayje kz(n — k) + 30 ay)y ky(n — k) + uye(n) (6)

The residuals depend on the past value of both signals and their variances are
Vz|:5,gj = W”"(Umy) (7)

Vyzg = var(ty;) (8)
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where var(.) is the variance over time and x | x,y is the prediction of z(t) by
the past samples of values of z(t) and y(?).
Therefore, GC from y to z (prediction z from y) is

) Q
=7,y
The range of GC,_,, is between 0 and co. GCy_., = 0 means that the past of
y(t) does not improve the prediction of z(t), i.e., V3 = Vyz.4, and GOy, > 0
denotes that the past of y(t) improves the prediction of z(%), i.e., Vyjz > Vyz gy
(y G-causes z).

In this study, GCs were calculated in ERP time intervals with statistically
significant between-condition differences. Based on GCs of each pair of EEG sig-
nals, directed connectivity matrices were generated with asymmetry character-
istic. After setting a fixed connection density, the channel-based causal networks
were constructed. Then, the local node characteristic was estimated according
to graph theory of complex network [12]. In a directed connection network, N
is the set of all the nodes in the network, and (i — j) represents the directed
link from nodes i to j, (i,j € N;i # j). If there is directed connection status
from nodes ¢ to j, a;—.; = 1; otherwise, a;_.; = 0. Nodal degree is the number of
links connected to the node. For a directed network, the indegree is the number
of inward links and the outdegree refers to the number of outward links.

Kimy = ), i (10)
JEN,i#]
ki(out) = Z Ai—j (11)
JENi#]
For an individual node, indegree and outdegree were computed to assess the role
of a node in a directed network.

GCy_p = In(

2.4 Statistical and Discriminate Analyses

To isolate the brain responses related to action intention types, the group-based
ERPs elicited by different task conditions from electrode FZ at frontal mid-
line area were statistically tested by one-way analysis of variance (ANOVA).
The internodal GCs of directed networks between “Ug” and “Sc” conditions
were statistically compared by the ANOVA to detect differences in links of the
Granger Causality networks. A false discovery rate (FDR) procedure was con-
ducted to correct for multiple hypothesis testing, with significance level set to
0.05. The null hypothesis is that the difference between task conditions is zero.
Furthermore, local nodal parameters measured in N170-P200 and P400-700 time
intervals constitute input features for the discriminant analysis between “Ug”
and “Sc” conditions. The subject-based feature samples were recognized by linear
discriminant analysis (LDA) with 10-fold cross validation, to reveal the transition
of inflow and outflow nodes from AON to MZN and determine distinguishable
EEG channels and features of brain states while understanding other’s different
action intentions.
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3 Results and Discussions

Under “Ug” and “Sc” conditions of the “hand-cup interaction” action observa-
tion task, it can be seen that both the two task conditions evoke significant ERP
responses in post-stimulus 170-200ms, 300 ms and 400-700 ms time intervals
(see Fig.2), which can be represented by N170-P200, P300 (P3a) and P400-700
(P3b) ERP components.
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10 T TT T T T T T
|

2F

!
!
!
I
A
y |
!
!
!
!
|
!
!
!
!
!
!
1

-200 0 200 400 600 800 1000

4

Fig. 2. Grand average of ERPs for “Ug” and “Sc” conditions from EEG channel FZ.
Time = 0 corresponds to the onset of “hand-cup interaction” presentation. The figure
shows that each condition has elicited significant ERP components marked with vertical
dotted lines. The blue and red solid lines represent the “Ug” and “Sc” conditions
respectively. (Color figure online)

Further between-condition ANOVA results show that significant difference
in ERP responses were generated in N170-P200 and P400-700 time intervals
(Table1), when agent’s unintelligible action particularly elicited higher ERP
response amplitudes of subjects (Fig. 2).

Table 1. ANOVA results between conditions for the task-evoked ERPs. F is the ratio
of between-group mean variance to within-group variance; p value indicates significance
level of ANOVA, in which * represents p < 0.05 and ** denotes p < 0.01.

ERP component | N170-P200 | P300 P400-700
Time interval 156-248ms | 274-320ms | 326-700ms
F 6.01 2.99 7.15

D 0.0143* 0.0837 0.0075%*

The source estimation results show that the cortical sources of the difference
waves of N170-P200 response are localized at anterior intraparietal sulcus, the
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premotor cortex and superior temporal sulcus in left cerebral hemisphere, which
have been demonstrated as the major brain regions constituting the AON for
mirror function. Besides, N170 is a non-specific, motion-related component and
P200 is known to be sensitive to physical properties of visual stimuli. P400-700 is
generally suggested to indicate central cognitive processing of attended stimulus
and related to subsequent memory processing [13]. The sources of the difference
waves of P400-700 response are distributed at right temporoparietal junction
and the medial prefrontal cortex (see Fig.3), which are the major components
of the MZN for higher-level intention inference.

N170-P200 P400-700

Fig. 3. Source current distribution of difference waves between ERPs evoked by “Ug”
and “Sc” task conditions. The top line is the current mapped on the scalp and the
bottom is the source current localized on the cortical surface in N170-P200 and P400-
700 time intervals.

Based on the results of ERP and source analysis, it can be speculated that
N170-P200 is indicative of the mirror mechanism that acquires information from
other’s action kinematics, i.e., the activation of AON, whereas P400-700 impli-
cates more information of high-order mentalizing process that infers the inten-
tions of other’s gestures, i.e., the formation of MZN.

Under the two task conditions, the GC network topologies transformed from
AON to MZN are presented in Fig. 4. It can be seen that, during action percep-
tion period represented by N170-P200 response, “Ug” and “Sc” conditions basi-
cally elicited directed information transmission from dorsolateral frontal regions
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to midline frontal area, i.e., EEG channels at bilateral dorsolateral frontal and
central regions act as “cause” node and EEG channels at midline frontal area
can be viewed as “effect” nodes in the AON. During intention inference period,
both the two conditions elicited directed information transmission from left fron-
toparital to left paroetooccipital and right frontal regions.

A N170-P200 (AON) P400-700 (MZN)
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Fig. 4. Channel-based directed networks during N170-P200 and P400-700 time win-
dows of the action intention understanding task. The networks are constructed by
setting a fixed threshold for the association matrices of GCs. A red EEG channel rep-
resents an outward node with higher outdegree, a blue channel refers to an inward
node with higher indegree, and a yellow channel means a node with equal indegree and
outdegree in a directed flow network. (Color figure online)

The statistical comparison of the GC connectivity matrices further discovers
significant difference in internodal causality of brain networks between intention
understanding of intention-oriented usual action and unintelligible action. As
shown in Fig. 5A, during low-level perceptual input stage, compared to the AON
formed in “Sc” condition, stronger Granger causality are distributed from the
nodes at frontal brain area to posterior parietal-occipital nodes in the directed
network under “Ug” condition. For usual action, the mirror system might result
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in direct awareness of the goal of a perceived action [4,5]. Therefore, the visual
perception of parietal-occiptal cortex in “Ug” condition elicited denser directed
information flow.

In the later inferential process, understanding other’s unusual action in “Sc”
condition induced stronger causal flow from left inferior frontal gyrus to posterior
occipital cortex and from parietal regions to right-lateral frontoparietal nodes,
but shows less activity from right inferior frontal gyrus to left frontal cortex
(Fig. 5B). This is probably because the observation of the unintelligible actions
[4,5]. The MZN is strongly recruited to fill in the “missing” information to judge
others’ mental states.

A N170-P200 (AON) B P400-700 (MZN)
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Fig. 5. Topological difference in node pairs of AON and MZN between task conditions.
The green edges indicate increased causality and the yellow edges represent decreased
causality in “Ug” condition compared to “Sc” condition. The directed links refer to
internodal GCs with significant differences in multiple comparisons with a FDR cor-
rection (p < 0.05). (Color figure online)

According to the significant topological differences in AON and MZN, this
study further determine effective EEG channel sites and node parameters for
the discrimination between the mental states under “Ug” and “Sc” conditions.
The LDA for feature combination of outdegree of channels (F1, FZ, F2) and
indegree of EEG channels (PO5, PO7, P6, P8) gets the classification accuracy of
0.7708 in the AON. Additionally, the LDA for feature combination of outdegree
of channels (P5, P7) and indegree of channels (FZ, F2, FC4, C4, CP4, P6)
acquires the accuracy of 0.6875 (Table 2).

From the discriminant analysis results, we can find that the left-lateral
parietal-occipital brain regions act as “effect” nodes with higher inflow connec-
tivity from frontal area during action perception period under “Ug” condition,
but play the role of “cause” nodes with higher outflow to right frontoparietal
regions under “Sc” condition. Therefore, the brain regions can be viewed as a
transition hub from AON to MZN, especially during the intention inference for
absence of contextual information of actions or observing unusual actions.
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Table 2. EEG feature combination and channel sits in identifying causal connectivity
networks for understanding other’s usual action (Ug) and unintelligible action (Sc).

Temporal network

AON

MZN

Input feature of specific
EEG channel
combination

oudegree of F1, FZ and
F2 indegree of
PO5,PO7, P6 and P8

outdegree of P5 and P7
indegree of FZ, F2, FC4,
C4, CP4 and P6

Directed connectivity

Bilateral frontal —

left parietal regions —

posterior right-lateral
parietal-occiptial regions | frontoparietal regions
Classification accuracy | 0.7708 0.6875

(LDA) between task
conditions

4 Conclusions

By constructing the GC-based directed networks in action observation and inten-
tion inference period of the brain, our study reveals the transition of causal
relationship among brain regions from the early mirror network to the later
mentalizing network. In the brain regions involved in information inflow and
outflow of action intention understanding, the left-lateral parietal-occipital cor-
tex can be viewed as a hub of the circuit of dynamic information flow. Based
on the information transmission from recognizing action kinematics to inferring
intentionality, feature extraction of GC-based network nodes was conducted in
EEG channel combinations of AON and MZN for discriminating other’s usual
and unintelligible actions. The EEG channel sites and nodal parameters identi-
fied by our study could provide effective features and brain locations for further
guiding individual action intention recognition.
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