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Abstract

Introduction: While understanding other’s action intention, mirror and mentalizing systems of human brain
are successively activated in action perception and intention inference processes.
Methods: To reveal the relationship between mirror and mentalizing systems during the two stages, this elec-
troencephalogram study adopted the method of time-varying orthogonalized partial directed coherence
(OPDC) to assess causal interaction between mirror and mentalizing networks during a “hand-cup interaction”
action intention understanding task.
Results: Task-related causal connectivity was found in gamma frequency band (30–45 Hz), primarily manifested
as directed edges from sensorimotor to frontal areas in poststimulus 400–600 ms interval and directed links from
frontal to parietal and temporal regions in 600–800 ms period. The analysis of event-related potential and source
currents suggests that the change of inter-regional causality is related with functional transition of the brain from
mirror matching to intention inference. The OPDC network modeling further finds that frontal area contains more
inflow nodes in mirror network, whereas more outflow nodes in mentalizing network, with high betweenness cen-
trality in temporally changing functional communities. Compared with intention-oriented actions, identification of
unintelligible action intention particularly induces stronger OPDC from right superior frontal to inferior frontal
gyrus and from sensorimotor to right frontotemporal regions during mentalizing inference process.
Conclusion: These findings collectively suggest that, in the time ordering of information transfer within the
directed networks, frontal area plays an important role of bridging hub between mirror and mentalizing sys-
tems, from maintaining and supervising perceptual information for mirror matching to controlling the mental-
izing process for decoding other’s action intention.

Keywords: action intention understanding; effective connectivity; mentalizing network; mirror network; ortho-
gonalized partial directed coherence

Impact Statement

From the perspective of neural mechanism of action intention understanding, this study extends previous
research to decoding dynamic fluctuations in the brain network structure related to continuous cognitive sub-
processes. In the field of human–machine interaction, the electroencephalogram (EEG) features extracted
from this study for recognizing different types of action intention have potential application value for medical
rehabilitation, such as motor dysfunction caused by stroke, spinal cord injury, and so on, by monitoring and
analyzing patients’ EEG signals. In addition, the EEG features can also be applied to controlling prosthetic
limbs, exoskeletons, and other assistive devices to help patients restore or improve movement.
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Introduction

Action intention understanding is an essential ability of
interpersonal communication for the human living in

the society, which helps people better judge other’s mental
activity and motivation, so as to predict and explain their
behavior (Oberman et al., 2007). The brain response of
action intention understanding includes two crucial neuro-
cognitive subprocesses, that is, recognition of action kine-
matics and inference of intrinsic motivation. In the two
stages, the brain successively recruits mirror and mentalizing
systems (Atique et al., 2011; Becchio et al., 2012; Brandone
and Stout, 2023; Brass et al., 2007; Catmur, 2015; Ge et al.,
2017; Oberman et al., 2007; Woodward and Gerson, 2014).
Depending on low-level perceptual input, the mirror system
mainly consisting of anterior intraparietal sulcus and premo-
tor cortex is activated to map the visual information of actions
onto memory representation (Buccino et al., 2007; Cheng
et al., 2007; Rizzolatti et al., 2001). At the following stage of
intention inference, the mentalizing system is activated to
speculate other’s mental state or intrinsic motivation accord-
ing to perceived actions, which is primarily composed of tem-
poroparietal junction (TPJ), medial prefrontal cortex (PFC),
and precuneus (Blakemore and Decety, 2001; Catmur, 2015;
Ge et al., 2019; Liew et al., 2011; Spunt et al., 2011; Van
Overwalle and Baetens, 2009).
In previous neuroimaging studies, the concurrent activa-

tion of mirror and mentalizing areas was rarely detected
(Van Overwalle and Baetens, 2009). However, the mirror
system should provide rapid and intuitive input of perceptual
information to the mentalizing areas to support inferential
process for making correct judgment (Catmur, 2015; Gard-
ner et al., 2015; Tidoni et al., 2013). Thus, the relevance
between mirror matching and intention inference is still
unclear, especially the role of mirror system in inferential
process while the mentalizing network is being recruited.
Past studies have found that the activity of mirror and men-
talizing systems depends on the type of observed actions
(Centelles et al., 2011; Ge et al., 2018; Liew et al., 2011;
Van Overwalle and Baetens, 2009). While observing famil-
iar or intention-oriented action, mirror neurons of the brain
might directly respond to being aware of the goal of other’s
actions, without the need of initiating the mentalizing sys-
tem. If the observed action is unusual or contextual informa-
tion is absent, the mirror system might be inactive due to the
lack of matchable action information, but the mentalizing
area might be strongly motivated to fill in the “missing”
information. The alternate activation of brain areas subserv-
ing one system and the areas subserving the other system
was described as distinct but complementary function of mir-
ror and mentalizing systems (Catmur, 2015; Chiavarino
et al., 2012; De Lange et al., 2008; Cheng, 2007; Gardner
et al., 2015; Zhang et al., 2018).
Dynamic effective connectivity provides a new insight into

temporal ordering of causal relation between the participating
areas of a brain network, which primarily concerns on infer-
ring the directions of neural interactions and information flow
directly from data (Friston et al., 2013). For further estimating
how one neural system exerts influence over another during
mirror matching and intention inference processes, this study
conducted an analysis of time-varying causal connectivity for

the electroencephalogram (EEG) signals recorded from a
“hand-cup interaction” action intention understanding task.
The timing of mirror responses and mentalizing processing
was determined by significant event-related potential (ERP)
components. In the effective connectivity network modeling,
orthogonalized partial directed coherence (OPDC) method
was applied to gamma-band (30–45 Hz) EEG signals to con-
struct inter-regional causal relationship and minimize the
effect of mutual sources within the brain (Omidvarnia et al.,
2014). Gamma response has been found to be strongly inter-
woven with a variety of sensory modalities (vision, sensation,
and audition), attention, perception, high-order cognition,
working memory load, basic motor response, and so on
(Gaetz et al., 2013; Herrmann et al., 2010; Kumar et al.,
2023; Vezoli et al., 2013). Besides, gamma-specific effective
connectivity pattern between cortical areas has been found in
memory-related brain function (Bayazi et al., 2021). There-
fore, gamma-band OPDC can be considered as a key neural
signature of information processing of action intention under-
standing in the human brain. Based on graph-theoretical anal-
ysis of time-sequential OPDC networks, spatiotemporal EEG
features were further extracted and used for recognizing dif-
ferent types of action intention. According to changing causal
flows over the task course, the conditions under which the
mirror area affects mentalizing area and crucial hubs of infor-
mation transfer in the transition from mirror network to men-
talizing network were analyzed and discussed.

Materials and Methods

EEG experiment and data preprocessing

Subjects. The EEG experiment was approved by the Aca-
demic Committee of the Research Center for Learning Science,
Southeast University, China. There were 30 college students
recruited to perform the “hand-cup interaction” action intention
understanding task. Exclusion criteria of subjects included left
handedness, medical, neurological, or psychiatric illness, and
history of brain injury or surgery. Each subject signed a fully
informed consent form about the experiment and received the
payment for the participation. Through further removing the sig-
nals seriously contaminated by artifacts and noise, effective EEG
data from 24 subjects, including 10 males and 14 females, aged
22.4– 2.3 (mean – standard deviation) were retained finally.

Experimental paradigm. The experimental task com-
prised three conditions in which the actions presented in the
stimuli pictures with different intention types, including two
intention-oriented actions quite usual in our life, that is, grasp-
ing a cup for using it (Ug) and grasping a cup for transporting it
(Tg), and an unintelligible action, that is, simple contact (Sc)
without a clear intention (Fig. 1A). The task was composed of
294 trials, in which each condition included 98 trials. For the tri-
als with the same hand motion, the cup was marked with one of
seven colors with equal probability; therefore, each color of cup
was presented 14 times in each condition. The trials from the
three conditions were cross-presented, with a constrain that con-
secutive presentation of the same action was less than four
times, as well as the same color of cup.

At the beginning of a trial, the symbol “+” was presented
at the center of screen for 150 ms. Then a cup was shown for
500 ms. After that, the screen presented a hand interacting
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with the cup for 2000 ms. In the meantime, the subjects were
asked to judge the intention of the action performer just in
their brain without the need of pressing any button. Then,
the symbol “+” was presented with a random time length at
the end of the trial (Fig. 1B). The total time for an experi-
ment execution was about 24 min.

EEG recording and preprocessing. An international
10–20 system of neuroscan was used to record EEG signals
with sampling rate at 500 Hz, in which 60 electrodes were
set to cover frontal, parietal, temporal, and occipital regions.
In addition, two reference electrodes were placed on bilateral
mastoids to provide reference signals, and four surface elec-
trodes were used to simultaneously record electrooculo-
graphic (EOG) signals, with two electrodes placed on higher
and lower eyelids and the other two electrodes placed 1 cm
lateral to the outer corner of the left and right orbits.

The raw EEG signals were preprocessed by Scan 4.3 pro-
cedure. At first, the EEG signals were band-pass filtered into
1–60 Hz range. Then, each trial was segmented into a 1200 ms
epoch, including 200 ms prestimulus and 1000 ms poststimulus
intervals, and the baseline correction was conducted for the
prestimulus time interval. Through visual inspection, the trials
contaminated by the artifacts, such as subject’s movement and
sweat, were rejected first. After that, ocular artifacts, including
ocular movements and eye blinks, were cleared according to
the simultaneously recorded EOG signals. The trials contami-
nated by electromyogram and electrocardiogram noises were
rejected with a threshold set in the range of 50–75 lv. Further-
more, other residual artifacts, such as the components of ocular
and muscle movements, were further removed through the
independent component analysis running in a trial-by-trial man-
ner in the EEGLAB toolbox.

After the preprocessing procedure, 1146, 1174, and 1139
trials were retained for Ug, Tg, and Sc conditions, respec-
tively, in which 36–68 trials were retained for each subject.
By concatenating the trials from all subjects for each task
condition, this study constructed three sets in which the size
of each set equals (number of channels) · (number of time
points) · (number of trials).

ERP and source current analyses

An ERP analysis was conducted to determine the timing
of psychological processing in the task course. The EEG

signals from midline electrodes, including Fz (frontal cor-
tex), FCz (frontal-central sulcus), and Cz (central sulcus),
were filtered into 1–30 Hz and group-averaged for further
comparison among task conditions.
Besides, the source currents of the ERPs were estimated

using a cortical source estimation procedure implemented in
the Brainstorm toolbox (http://neuroimage.usc.edu/brainstorm;
Tadel et al., 2011). In this procedure, the EEG signals were
assumed to be generated from a block of electric dipoles at the
cortical surface. The noise of the scalp sensors was removed
through computing the noise covariance matrix of the signals
in the prestimulus interval. Cortical currents were estimated
through an inverse kernel matrix, which was produced from
the forward model constructed by OpenMEEG software
(http://www-sop.inria.fr/athena/software/ OpenMEEG/; Gram-
fort et al., 2010). For the group-averaged EEG data from each
condition, dipole modeling method was adopted that adjusted
the parameters of a single current dipole fitted to the sensor
data, to realize source current transformation at each point in
time. As a result, in each 200 ms time interval of the task, a lin-
early constrained minimum variance-type map was produced,
and an equivalent current dipole was fitted at the strongest
peak location of that map.

Time–frequency analysis of OPDC

Orthogonalized partial directed coherence. Directed
interactions over time and frequency between EEG signals
were measured by OPDC, which is an orthogonalized version
of classical partial directed coherence (PDC) usually used to
detect causal influences in multivariate stochastic systems
(Huang et al., 2016; Omidvarnia et al., 2014; Zhang et al.,
2020). The classical PDC can provide a measure in frequency
domain on the basis of Granger causality, through modeling
time signals by multivariate autoregressive (MVAR) proc-
esses. For a time series y tð Þ with L number of samples
(t = 1; . . . . . . ; LÞ, a strictly causal MVAR model of order p
with dimension M (Here M is the number of channels) is
defined as

y1 tð Þ

. . .
yM tð Þ

2
64

3
75 =+

p

r = 1
Ar

y1 t� rð Þ

. . .
yM t� rð Þ

2
64

3
75þ

x1
tð Þ

. . .
xM

tð Þ

2
64

3
75 (1)

where A1;A2 . . .Ap areM ·M coefficient matrices,

FIG. 1. Experimental paradigm of “hand-cup interaction” action intention understanding task. (A) Stimulus materials: a
cup at the center of screen; a hand grasping a cup for using it (Ug); a hand grasping a cup for transporting it (Tg); and simple
contact (Sc). (B) Timeline of stimulus presentation and time interval of an epoch of EEG data. EEG, electroencephalogram.
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Ar =
ar11 . . . a

r
1M

. . .
arM1 . . . a

r
MM

2
4

3
5; r = 1; . . . ; pð Þ (2)

and x1 . . .xM½ �T =x is a normally distributed real-valued
zero-mean white noise vector with diagonal covariance
matrix Rw = hwwTi = diagfk2kkg. Here, h·i is the expected
value operator. In Ar, the real-valued parameter arkl reflects
the linear relationship between channels k and l at the
delay r.
Based on time-varying version of the model in Equation

(1) in which matrices Ar tð Þ are time varying, the time-
varying PDC from signal l to signal k at frequency f is
described as

PDCkl t; fð Þ = pkl t; fð Þ≜ jAkl t; fð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aHl t; fð Þal t; fð Þ

p (3)

Here, Akl t; fð Þ refers to the klth element of A t; fð Þ, and aHl
represents the Hermitian transpose of the vector al. The mea-
sure pkl t; fð Þ takes values between 0 and 1, which is direc-
tional, that is, pkl t; fð Þ is not equal to plk t; fð Þ.
EEG-based interactive relationship analysis faces with a

significant challenge of volume conduction (i.e., several
signals are often produced by a common brain source),
which might lead to false connectivity. Hipp et al. (2012)
suggest that the orthogonal parts can be extracted by ortho-
gonalizing power envelope of surface EEG signals in the
complex domain, to reduce the covariability. The OPDC
was thus proposed to be used in directed connectivity anal-
ysis through combining time-varying PDC analysis, ortho-
gonalization, and imaginary part of coherence function.
Notably, the main idea of OPDC is to alleviate the effect of
mutual sources at the level of MVAR coefficients, instead
of performing the orthogonalization process at the ampli-
tude level. In the computation of OPDC, EEG signals are
supposed to be generated through a linear superposition of
K independent source signals. In the frequency domain, the
transformation relationship can be described as

Yi fð Þ = +
K

k = 1
vikSk fð Þ (4)

This means that multichannel EEG signals Y fð Þ=VS fð Þ.
Here, Y fð Þ 2 CM, S fð Þ 2 CK represents multivariate source
signal, and V 2 RM ·K refers to the matrix containing all
source weights. By fitting a strictly causal MVAR mode on
the multichannel EEG signal y tð Þ in the time domain, the
Equation (1) can be transformed into the frequency domain
as follows:

Y fð Þ = +
p

r = 1
Are

� j2pf rY fð ÞþW fð Þ=B fð ÞY fð ÞþW fð Þ (5)

where B fð Þ =+p

r = 1Are� j2pfr and Bkl fð Þ =+p

r = 1a
r
kle

� j2pfr.

According to Equation (5), Y fð Þ =B fð ÞVS fð ÞþW fð Þ. The
cross-spectral density matrix C fð Þ of Y fð Þ can be acquired by

C fð Þ = hY fð ÞYH fð Þi = hðB fð ÞVS fð ÞþW fð ÞÞ

· SH fð ÞVHBH fð ÞþWH fð Þ
� �i (6)

Between Yi fð Þ and Yj fð Þ, the cross-spectral density func-
tion, Cij fð Þ, can be computed according to

Cij fð Þ =
*
+
M

n1 = 1
+
M

n2 = 1
+
K

k1 = 1
+
K

k2 = 1
Bin1 fð ÞB�

jn2 fð Þvn1k1vn2k2

· Sk1 fð ÞS�k2 fð Þ
+
þhWi fð ÞW�

j fð Þi (7)

In Equation (7), Sk1 fð Þ and Sk2 fð Þ are independent; there-
fore, all terms containing hSk1 fð ÞS�k2 fð Þi; k1 6¼ k2 are 0,
which makes Equation (7) be transformed into

Cij fð Þ =
*
+
M

n1 = 1
+
M

n2 = 1
+
K

k = 1
Bin1 fð ÞB�

jn2
fð Þvn1k1vn2k2 jSk fð Þj2

+

þhWi fð ÞW�
j fð Þi (8)

The imaginary part of Cij fð Þ can be described as follows:

ImagfCij fð Þg= +
M

n1 = 1
+
M

n2 = 1
+
K

k = 1

· fvn1k1vn2k2 jSk fð Þj2ImagfBin1 fð ÞB�
jn2

fð Þgg (9)

Since the effect of mutual sources is excluded, true
interaction between EEG signals can be reflected by
ImagfBin1 fð ÞB�

jn2 fð Þg, that is,

ImagfBin1 fð ÞB�
jn2

fð Þg = +
p

r1 = 1
+
p

r2 = 1
ar1in1a

r2
jn2sin 2pf r1 � r2ð Þ� �

= +
p

r1 = 1
+
p

r2 = 1
ar1in1a

r2
jn2sin 2pf r1ð Þ� �

cos 2pf r2ð Þ� �

þ +
p

r1 = 1
+
p

r2 = 1
ar1in1a

r2
jn2sin 2pf r2ð Þ� �

cos 2pf r1ð Þ� �
(10)

When the mutual sources have been excluded, the orthogon-
alized components of arkle

� j2pfr; k = 1; . . . ;M; l= 1; . . . ;M at
different delays, including the real part arklcos 2pfrð Þ and the
imaginary part arklsin 2pfrð Þ, play a salient role in estimating the
true connectivity between channels.

Based on this principle, the time-varying OPDC strength
of the interaction of a given signal l with regard to signal k
can be represented by

Wkl t; fð Þ≜

����+p

r1 = 1
+

p

r2 = 1
ar1kl tð Þar2kl tð Þcos 2pfr1ð Þsin 2pfr2ð Þ

����
aHl t; fð Þal t; fð Þ

(11)
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=

����+p

r1 = 1
+

p

r2 = 1
Realfar1kl tð Þe� i2pfr1gImagfar2kl tð Þe� i2pfr2g

����
aHl t; fð Þal t; fð Þ (12)

In Equation (11), the sum of weighted sine and cosine
terms puts on a trend varying appearance to the OPDC mea-
sure along the frequency axis. It can be seen that Equations
(11) and (12) are equivalent to the following decomposition
of pkl t; fð Þ, that is,

Wkl t; fð Þ = jRealfAkl t; fð Þgjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aHl t; fð Þal t; fð Þp ·

jImagfAkl t; fð Þgjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aHl t; fð Þal t; fð Þp if k 6¼ l (13)

In Equation (13), each factor ranges from 0 to pkl t; fð Þ;
thus, the measure Wkl t; fð Þ will always take values between
0 and 1.

Time-frequency detection of OPDC change. According
to the definition, the OPDC analysis was conducted to mea-
sure inter-regional directed interactions over time and fre-
quency of the EEG signals. The EEG channels located at
frontal and central sensorimotor regions were selected to cal-
culate OPDC between pairwise signals. The dual extended
Kalman filter was adopted to estimate time-varying MVAR
parameters. A statistical testing procedure was applied on
the data from all the subjects to obtain time-resolved OPDC
that quantifies the directed influences between selected chan-
nels. In this procedure, the prestimulus 200 ms period was
used to construct the null distribution as being considered as
baseline. The time-varying OPDC measures were extracted
from the poststimulus task period of each trial and compared
with a distribution of the same measures extracted from the
baseline intervals of each trial. The highest score at the 99th
percentile of the distribution of time-frequency bin over
prestimulus epochs is computed, which produces a thresh-
olding plane. To find the time-frequency bins with signifi-
cant values over the baseline interval, a time-frequency
threshold was applied to each trial. As a result, average of
the thresholded OPDC was computed as the mean connectiv-
ity representation between channels.

Construction of time-sequential causal networks

To identify how mirror matching and intention inference
modulate inter-regional influence, OPDC-based effective
connectivity networks were constructed in task-related time
windows and frequency band. Within a brain functional net-
work, inter-regional interactions present a quasi-stable state
(about 100–200 ms), which makes functional network flexi-
bly adapt and continuously reorganize from one coordination
system to another (Baker et al., 2014; Bola and Sabel, 2015).
Besides, each time span containing significant ERP compo-
nent is about 200 ms in this study. Considering the dynamic
fluctuation of connectivity affected by the duration of inter-
regional interactions and the ERP response interval, an equal
time segment was set for EEG data to construct time-
sequential directed networks. Accordingly, each trial was
decomposed into one prestimulus interval and five continuous
poststimulus time windows, that is, 0–200 ms (TW1), 200–
400 ms (TW2), 400–600 ms (TW3), 600–800 ms (TW4), and
800–1000 ms (TW5) intervals.

OPDC-based directed network construction. Through
further time-frequency detection for OPDC change with respect
to baseline, EEG signals were further filtered into 30–45 Hz
gamma frequency band. For 60-channel EEG signals, each
channel serves as a “node” in a directed network. In every
200 ms time window of a trial, OPDC was calculated for
pairwise EEG channels, resulting in a 60 · 60 association
matrix of OPDC measures with asymmetry characteristic.
Thus, a sequence composed of six continuously evolving
OPDC association matrices was formed for each trial.
For every OPDC association matrix, an adjacent matrix

(i.e., a directed network) can be generated by setting a
threshold following the two criteria: (1) For emphasizing
local and regional variations between the topological struc-
tures of directed networks organized for different cognitive
functions or different cognitive conditions, a fixed connec-
tion density was set for all OPDC matrices to get the adja-
cent matrices, according to Erdos–Renyi model (Erdo†s and
Rényi, 1964), that is, pden � 2ln nð Þ=n, where n is the number
of nodes in a network; and (2) while tracing the change of
connectivity strength of a network along the time course, a
fixed threshold was set for time-sequential OPDC matrices.
The threshold is the minimum OPDC measure of the adja-
cency matrices in prestimulus baseline period with a fixed
connection density abiding by criterion (1).

Local and global matrices of directed graphs. Graph-
theoretical analysis was performed to quantify the topologi-
cal properties of OPDC-directed networks (Bullmore and
Sporns, 2009). In the dynamic reorganization of directed net-
works, the change in local specialization was assessed by
nodal degree, nodal strength, and betweenness centrality,
and global integration was quantified by modularity. For the
directed graphs of OPDC networks, the Louvain algorithm
with rapid convergence properties and high hierarchical par-
titioning was adopted for community detection (Blondel
et al., 2008). According to the definition from graph theory,
N is the set of all the nodes in a network, and i"jð Þ repre-
sents the directed link from node i to node j, i; j 2 N; i 6¼ jð Þ.
If there is directed connection status from node i to node j,
bi"j = 1; otherwise, bi"j = 0.
Nodal degree is the number of links connected to the

node. For a directed network, the indegree is the number of
inward links, and the outdegree refers to the number of out-
ward links (Opsahl et al., 2010).

di inð Þ = +
j2N;i 6¼j

bj"i (14)

di outð Þ = +
j2N;i 6¼j

bi"j (15)

In a directed network, a node with high outdegree central-
ity can be viewed as a “cause” hub, which reflects the “out-
flow” in information transfer. On the contrary, a node with
high indegree centrality serves as an “effect” hub, indicating
the “inflow” in inter-regional information communication
(Seth, 2010; Sporns et al., 2007).
Nodal strength is given by the sum of the OPDC measures

of the weighted adjacent edges connected to the node. For
node i, the inflow strength is the sum of OPDC measures of
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inward links and the outflow strength refers to that of out-
ward links.

stri inð Þ = +
j2N;i 6¼j

bj"i · OPDCji (16)

stri outð Þ = +
j2N;i6¼j

bi"j ·OPDCij (17)

Betweenness centrality of nodes was computed to assess
the communication role of a node within a network, which is
defined as the fraction of all shortest paths in the network
that pass through a given node i:

bci =
1

n� 1ð Þ n� 2ð Þ +
h; j 2 N

h 6¼ j; h 6¼ i; j 6¼ i

qhj ið Þ
qhj

(18)

where qhj is the number of the shortest paths between nodes
h and j, and qhj ið Þ is the number of the shortest paths
between nodes h and j that pass through node i.
To measure the strength of division of a directed network

into modules, modularity of the network can be computed
according to

Q = +
u2G

euu � +
v2G

euv
� �2

" #
(19)

where G is a set of nonoverlapping modules that the network
can be completely divided into, and euv is determined by the
ratio of the number of connections that link the nodes in
module u with the nodes in module v to the total number of
the connections in the network.

Cosine similarity of nodal degree between OPDC networks

For each trial, six time-sequential directed networks
were produced along the task course. According to the def-
inition of nodal degree, an indegree vector and an outde-
gree vector with 60 dimensions (the number of nodes)
were extracted from a directed graph. Degree distribution
of all nodes in a network is an important indicator of net-
work construction and resilience. Complex brain network
has a characteristic of “heavy-tailed” degree distribution, that
is, a small number of nodes with numerous connections (hub
nodes), but most of the nodes with few connections (van den
Heuvel and Sporns 2013). Therefore, nodal indegree and out-
degree in a directed network were thought to ideally represent
local maxima of “inflow” and “outflow” connections in global
network. For the indegree (resp. outdegree) vectors of two
OPDC networks, cosine similarity can be used to estimate top-
ological similarity in localization of inflow (resp. outflow)
hubs, by measuring the consistency of directions between two
vectors.
Given two nodal degree vectors, E and F, extracted from

two networks, their cosine similarity is defined as

similarity = cos hð Þ = E·F
jjEjj jjFjj =

+
n

i= 1Ei ·Fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

n

i= 1 Eið Þ2
q

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

n

i = 1 Fið Þ2
q (20)

Here, Ei and Fi represent the elements of vectors E and F,
respectively. The cosine value of the angle between the two
vectors determines whether they roughly point in the same
direction. When two vectors have the same direction, the
cosine similarity value is 1; when the angle between two
vectors is 90�, the cosine similarity value is 0; and when two
vectors point in completely opposite directions, the cosine
similarity value is� 1.

For detecting the hub reorganization of directed networks
along the timeline, cosine similarity was calculated between
the nodal indegree (resp. outdegree) vectors of every two time-
sequential directed graphs from averaged adjacent matrices of
each subject. Besides, the last OPDC network formed in TW5
was compared with that in the baseline period by the cosine
similarity test, to reveal whether the dynamic network at the
end of a trial was returned to the level of resting-state network.

Statistical and discriminant analyses for spatiotemporal

EEG features

First, in each time window with ERP evoked compared
with baseline, the amplitudes of single-trial evoked poten-
tials were statistically compared among the three conditions
by one-way analysis of variance (ANOVA). Moreover, in
each time window, internodal OPDC measures (i.e., ele-
ments of the association matrices) were compared one by
one between task conditions by the ANOVA, to isolate the
direction and strength of information flows related to under-
standing other’s intention-oriented and unintelligible actions.
A false discovery rate procedure was conducted to correct
for the multiple hypothesis testing, with significance level
set to 0.05. The null hypothesis is that the difference between
conditions is zero.

Besides, EEG features of the topological hub reorganization
from mirror network to mentalizing network were extracted
according to the significant differences in the OPDC networks.
As nodes with high outdegree and indegree represent the “cause”
and “effect” hubs, the changes of outflow strength and inflow
strength of nodes at crucial brain areas from mirror response to
mentalizing process constitute two-dimensional input features.
For each subject, single-trial feature samples were recognized
individually by different classification algorithms with 10-fold
cross validation, including linear discriminant analysis, support
vector machine, and Naive Bayes, to reveal functional transition
of the nodes in dynamic network reorganization and determine
distinguishable EEG channels and features for understanding
other’s different types of action intentions.

Results

ERP responses and cortical current distribution

From the ongoing waveforms in Ug, Tg, and Sc condi-
tions, it can be found that, in poststimulus period, the five
consecutive 200 ms time windows well contain the span of
important ERP components (Fig. 2). Significant difference
among the amplitudes of ERPs from Ug, Tg, and Sc condi-
tions can be first found in N170 (TW1) related to motion
component of visual stimulus. Besides, P3b in TW3 and the
late positive potential in TW4 also show significant differen-
ces among the three conditions (Table 1).
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It is notable that the source currents in TW3 interval under
the three conditions are distributed on sensorimotor area and
extended to posterior parietal cortices, which are the crucial
participating components of the mirror system (Van Over-
walle and Baetens 2009). In TW4 interval, the source distri-
bution is changed to TPJ and the PFC, that is, the primary
components of mentalizing system (Bonini et al., 2010; Van
Overwalle and Baetens 2009) (Fig. 3). Although the three
conditions elicit spatially similar cortical current distribution,
understanding intention-oriented actions in Ug and Tg condi-
tions induces higher activity in TW3, but less cortical activa-
tion in TW4 interval, compared with unintelligible action in
Sc condition. The variation in cortical activation strength
affected by action intention types well coincides with the
complementary effect of mirror response and mentalizing
function (Catmur, 2015; De Lange et al., 2008; Decety,
2007; Gardner et al., 2015). Combining the psychological
mechanism of the ERP components and cortical source
localization, TW3 is supposed to be highly involved in mir-
ror matching of other’s action onto one’s memory system
and TW4 is very likely the time interval comprising the men-
talizing process.

Interchannel OPDC changes in gamma frequency band

Corresponding to the change of cortical currents, the
OPDC in the frequencies around 30–45 Hz presents time-
varying and complementary causal interactions between
frontal and sensorimotor areas. As shown in Figure 4,

interchannel OPDC significantly occurs from sensorimotor
(channels C5, C3, and C1) to frontal (channels FPz, Fz, and
F1) regions in TW1, TW2, and TW3. Subsequently, the
directions of causal interaction are reversed, manifested as
directed links from frontal (channels FPz, Fz, and F1) to
sensorimotor regions (channels C5, C3, and C1). Compared
with the time-frequency OPDC measures in Ug and Tg con-
ditions, Sc condition induces lower OPDC from sensorimo-
tor to frontal regions in TW3 (400–600 ms) interval, but
higher OPDC from frontal to sensorimotor regions in the
later TW4 (600–800 ms) interval. The complementary effect
of interchannel OPDC provides further evidence for the tim-
ing of mirror response and intention inference.

Task effects on spatiotemporal evolution of OPDC networks

Except the network formed in TW4 interval, directed net-
works in prestimulus, TW1, TW2, TW3, and TW5 intervals
show highly similar topological architectures, primarily
manifested as directed edges from sensorimotor area to fron-
tal area (Fig. 5). The result means that, in the five time inter-
vals, central sensorimotor regions play the role of “cause”
hub of directed information flow, whose “effect” is exerted
on the frontal area. Notably, the OPDC networks in TW4
show significantly different topological structures compared
with those in other five time windows. The nodes at frontal
regions particularly exhibit higher outdegree in the directed
networks in TW4, indicating that the frontal cortex plays the

FIG. 2. Task-elicited potential change
over time course. Grand average of ERPs
for Ug, Tg, and Sc conditions from EEG
channels (A) Fz at frontal area and (B) Cz
at central sulcus area. Time = 0 corre-
sponds to the onset of “hand-cup interac-
tion” presentation. The figure shows that
each condition has elicited significant ERP
components N170, P3a, and P3b. The blue,
green, and purple solid lines represent the
Ug, Tg, and Sc conditions, respectively.
ERP, event-related potential; EEG, electro-
encephalogram; Fz, frontal cortex; Cz, cen-
tral sulcus.

Table 1. SIGNIFICANCE VALUES (P) IN ANOVA TESTS FOR AMPLITUDES OF ERPS OF MIDLINE CHANNELS AMONG UG,
TG, AND SC CONDITIONS

Channel time window TW1 (N170) TW2 (P3a) TW3 (P3b) TW4 TW5

Fz 0.0083** 0.4572 0.0085** 0.0487* 0.0952
FCz 0.0018** 0.6725 0.0108* 0.0176* 0.1030
Cz 0.0014** 0.3888 0.0402* 0.0121* 0.1494

p-Significance value; * represents p < 0.05 and ** denotes p < 0.01.
ANOVA, analysis of variance; ERP, event-related potential; TW, time window; Fz, frontal cortex; FCz, frontal–central sulcus; Cz, central

sulcus.
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role of “cause” hub at this time, when the “effect” is exerted
on the posterior parietal and occipital regions.
Further graph-theoretical analysis reveals the temporal

evolution of global topology of the effective connectivity net-
works. While a fixed threshold is set for the OPDC matrices,
the connection density of the directed network in TW4 is
significantly increased, with the number nearly doubling
those of the OPDC networks in the other five time intervals
(Fig. 6A). Corresponding to this result, modularity of the
OPDC network in TW4 is significantly decreased (Fig. 6B).
Less modularity of a network indicates higher functional inte-
gration among anatomically discrete brain areas (Bullmore
and Sporns, 2009). Thus, the OPDC network constructed in

TW4 can be seen as highly integrated and usually has more
efficient information transfer.

Besides, from the baseline period to the intervals of TW1,
TW2, and TW3, the number of “effect” nodes with indegree
higher than outdegree in the OPDC networks is almost invar-
iant over the time course, but obviously increases in the
OPDC network of TW4 interval and then returns to the ini-
tial level at the end of task (TW5) (Fig. 6C). In the mean-
time, the number of “cause” nodes with higher outdegree in
the OPDC networks is remarkably reduced (Fig. 6D). In
TW4 interval, quantitatively, more inflow nodes mean that
more “effect” regions are receiving incoming information
flow from anterior neural system, and less outflow nodes

FIG. 3. Source currents of
ERPs displayed on cortical
surface in the time intervals
of TW3 (400–600 ms) and
TW4 (600–800 ms) under
Ug, Tg, and Sc conditions.
ERPs, event-related poten-
tials. TW, time window.

FIG. 4. Time-frequency diagram of OPDC between EEG channels located at frontal and sensorimotor regions in Ug,
Tg, and Sc conditions. In each subdiagram, horizontal axis represents poststimulus time course of the task, and vertical
axis depicts EEG frequencies. OPDC, orthogonalized partial directed coherence; EEG, electroencephalogram.
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indicate that the “cause” regions with outgoing information
flow are more focused, primarily on the frontal cortex (Fig. 5).

Furthermore, in the tests for cosine similarity of indegree
(resp. outdegree) vectors of nodes, the OPDC networks
formed in baseline and TW1, the networks in TW1 and
TW2, and the networks in TW2 and TW3 show high

topological similarity in terms of spatial hub distribution
(Fig. 7A, B). In the dynamic networks fluctuating along the
task course, dramatic hub reorganization can be found in
TW4 interval, when the OPDC network topology is greatly
different with its former and latter networks in time course,
that is, decreased cosine similarity between the indegree

FIG. 5. OPDC-based networks formed under Ug, Tg, and Sc conditions in consecutive 200 ms time windows. The
directed connections are constructed by setting a fixed connection density for each OPDC matrix. The red color marked in
EEG channels represents node with higher outdegree than indegree in a network, whereas the blue channels mean the nodes
with higher indegree than outdegree. OPDC, orthogonalized partial directed coherence; EEG, electroencephalogram.

FIG. 6. Temporal evolution of global topology of OPDC networks with a fixed threshold in Ug, Tg, and Sc condi-
tions. (A) Connection density, (B) modularity, (C) number of nodes with higher indegree, and (D) number of nodes
with higher outdegree of the OPDC networks formed in consecutive 200 ms time windows. The blue, green, and purple
curves represent Ug, Tg, and Sc conditions, respectively. OPDC, orthogonalized partial directed coherence.
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(resp. outdegree) vectors of the directed networks in TW3
and TW4 and those in TW4 and TW5.

Causality transition from mirror network
to mentalizing network

From the perspective of node dynamics, nodes in a net-
work are processes rather than things (Taichi 2018; Yang
et al., 2015). To measure the importance of nodes as input
and output hubs in the cognitive process, we constructed the
composition of the directed mirror and mentalizing net-
works, by integrating the adjacent matrices of OPDC

networks formed in TW3 and TW4 intervals (Schlesinger
et al., 2017; Taichi 2018). According to the interpretations of
complex network measurements, nodes with a high number
of shortest paths often have high betweenness centrality and,
consequently, play an important role of a bridging hub that
connects disparate parts of the network (Kaiser 2011; Rubi-
nov and Sporns, 2010). Figure 8A depicts the betweenness
score of sequential nodes in the composition networks.
Under Ug, Tg, and Sc conditions, the nodes with high betwe-
enness centrality basically focus on anterior frontal area and
obey the form of power law, indicating the scale-free

FIG. 7. Topological similarity between time-sequential directed networks. (A) Cosine similarity between indegree
vectors of time-sequential networks. (B) Cosine similarity between outdegree vectors of time-sequential network. The
blue, green, and purple curves represent Ug, Tg, and Sc conditions, respectively.

FIG. 8. Betweenness centrality of nodes in the composition of OPDC networks in TW3 and TW4. (A) Distribution of
betweenness scores of nodes in the composition networks under Ug, Tg, and Sc conditions. (B) EEG channel locations
and sequential numbers corresponding to nodes. (C) Power-law fitting of distribution of nodal betweenness scores, with
root mean square error of 2.95, 4.79, and 11.41 under Ug, Tg, and Sc conditions, respectively. OPDC, orthogonalized
partial directed coherence; TW, time window; EEG, electroencephalogram.
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network characteristic with highly-connected local hubs
(Fig. 8B, C).

The directed networks were further parsed through the nodes
into different communities in TW3 and TW4 intervals using
the Louvain method. The composition of communities through
input and output hubs contains two important bridging nodes at
midline PFC (channel FPz) and midline frontal cortex (channel
Fz) with the highest betweenness centrality in the composition
network (Fig. 9). It can be found that, in the reorganization of
directed networks from mirror response to mentalizing func-
tion, the bridging nodes at frontal area experience a transition
from input hub to output hub, which glue links together as
interface between two time-ordering processes (Taichi 2018).

Discriminable graph features from causal flow transition

As with the change of inflow and outflow strength of the
nodes, the differences in internodal OPDC measures related
to action intention types are also found in the channels
located at frontal area. In TW3 interval, there is almost no
difference between task conditions. However, the significant
differences are revealed in TW4 interval, in which Sc condi-
tion evokes stronger directed connections from right superior
frontal to right inferior frontal gyrus, directed links from sen-
sorimotor to right frontotemporal regions, and directed edges
from parietal to right frontotemporal regions compared with
Ug and Tg conditions (Fig. 10).

Following the causality transition of OPDC networks from
TW3 to TW4, the changes of local features are extracted from
the nodes at prefrontal (mean value of channels FP1, FPz, FP2,
AF3, and AF4), left frontal (mean value of channels F1, F3,
F5, and F7), and right frontal (mean value of channels F2, F4,
F6, and F8) regions, respectively. The subject-based samples
are presented in the scatter diagrams of Figure 11, with a two-
dimensional feature distribution composed of the temporal
evolution of inflow strength and outflow strength of the chan-
nels. Further single-trial discrimination between conditions for
each subject shows that, within the OPDC networks, the chan-
nels at prefrontal, left frontal, and right frontal areas have rela-
tively high accuracies (around 0.6) in the classifications of “Ug
versus Sc” and “Tg versus Sc” task conditions, whereas there
is a meaningless accuracy (<0.5) in the binary classification for
task conditions “Ug versus Tg” (Fig. 11). The results indicate
that the functional transition from input hub to output hub at
frontal area in OPDC-based directed networks can be used as
effective features in identifying brain responses involved in
decoding other’s intention-oriented and unintelligible actions.

Discussion

Time intervals of mirror response and mentalizing process

Early studies using perceptual discrimination tasks suggest
that the response time of mirror area is around 250–300 ms,

FIG. 9. Hub nodes in the composition of communities within OPDC networks in TW3 and TW4 under Ug, Tg, and
Sc conditions. Red nodes belong to the community of networks in TW3, and blue nodes lie in the community of net-
works in TW4. The green nodes are the bridging hubs at midline (A) prefrontal and (B) frontal regions with high
betweenness centrality between the temporally changing communities of the directed networks. OPDC, orthogonalized
partial directed coherence; TW, time window.

CAUSALITY IN ACTION INTENTION UNDERSTANDING 11

D
ow

nl
oa

de
d 

by
 1

88
.2

53
.1

21
.2

7 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
2/

11
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



whereas response times for intention identification are usually
longer and show a wide degree of variability ranging from
600 to 1500 ms (Catmur 2015).

Mirror matching function. The directed networks formed
in continuous time intervals, TW1, TW2, and TW3, show
similar topological configuration manifested as high cosine
similarity in terms of hub node distribution (around 0.6),
which reflects sustained perceptual information processing in
0–600 ms interval. In the task-elicited sequential ERPs of the
current study, the amplitudes of N170 in TW1 (0–200 ms) are
significantly different (p < 0.05 in ANOVA test) among
the three task conditions (Table 1), reflecting perceptual
responses for differential physical properties of visual stimuli
(Yang et al., 2011). Subsequently, P3a component in TW2
(200–400 ms) is believed to reflect attention allocation and
memory updating involved in cognitive tasks (Berti 2015;
Polich, 2007). Meanwhile, there is no significant potential
difference (p > 0.05 in ANOVA test) among the three task
conditions (Table 1), which is probably related with common
function in switching focus of attention for novel stimuli
within working memory mirrored in P3a component (Berti
2015). As a late positive potential, P3b component in TW3
(400–600 ms) has been suggested to reflect central cognitive
processes occurring with the active detection of an attended
stimulus and appears related to subsequent memory process-
ing (Polich 2007). Specifically, Sc condition for understand-
ing other’s unintelligible action elicits the highest amplitude
among the three conditions with significant difference (p <
0.05 in ANOVA test). It might be because subjectively
improbable events will elicit a P3b and the less probable the

event, the larger the P3b amplitude (Polich 2007). Particu-
larly, the source currents of P3b are distributed on central sen-
sorimotor area and extended to posterior parietal cortices, that
is, the mirror neuron area revealed by most neuroimaging
studies (Van Overwalle and Baetens 2009). ERP study by
Möhring et al. (2014) suggests that task-induced N170 com-
ponent reflects early activation of mirror neuron, whereas
N400 potential in 350–550 ms interval can be best interpreted
as reflecting sustained, but not initial, mirror neuron activity.
Based on this evidence, it is plausible to suppose that the
N170 elicited in this study indicates early perceptual initiation
for visual stimuli and the P3b across 400–600 ms interval can
be viewed as a neural index of mirror matching for perceived
actions onto one’s memory representation, between which
the P3a across 200–400 ms interval reflects memory refresh
and retention of visual perception information.

Mentalizing inference process. Following the mirror
response, the directed network established in TW4 (600–800
ms) interval presents obviously different directional flows in
topological structure. In addition, the source currents of the
ongoing waveforms in TW4 interval are primarily localized
at the TPJ area, and Sc condition for understanding other’s
unintelligible action induces the strongest activation in the
PFC related to executive control for the inferential process.
These brain areas have been found to be the fundamental
components constituting the mentalizing system (Van Over-
walle and Baetens 2009). The evidence suggests that the time
segment of 600–800 ms is very likely involved in mentalizing
process to respond to higher level judgment for other’s action
intention. The timing and location of mentalizing process are

FIG. 10. Differences between the OPDC matrices in TW3 and TW4 from different conditions. From left to right: the
networks are constructed by the significant difference in internodal OPDC from “Tg minus Ug,” “Sc minus Ug,” and
“Sc minus Tg.” The green directed links indicate higher OPDC (i.e., positive difference values), and the yellow directed
links represent lower OPDC (i.e., negative difference values) (ANOVAs with a FDR correction: p < 0.05). OPDC,
orthogonalized partial directed coherence; TW, time window; ANOVA, analysis of variance; FDR, false discovery rate.
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partly overlapped with the ERP study by Beudt and Jacobsen’
(2015) that identifies esthetic appreciation and judgment of
visual abstract to be in the range of 700–1100 ms with signifi-
cant positive activity at central and parietal areas.

Bridging hub in causal flows from mirror network
to mentalizing network

Early research does not completely support the opinion of
direct perception and the intention understanding theory of
mirror neuron function (Catmur, 2015). A substantial number
of studies support the assumption that the mirror and mental-
izing systems work together, and mirror neurons provide per-
ceptual information to mentalizing system to complete
inferential process (Gardner et al., 2015; Tidoni et al., 2013;
Van Overwalle and Baetens, 2009). Therefore, the causal role
of mirror and mentalizing areas in identifying other’s inten-
tions particularly needs to be validated by more evidence. In
this study, the topological structures of mirror and mentaliz-
ing networks were analyzed, and crucial nodes were extracted
to build the relevance between the two systems.

Sensorimotor-frontal causal connectivity involved in mirror
response. Effective connectivity networks from TW1 to
TW3 intervals show consistent causal directions from central
sensorimotor to frontal areas, including prefrontal and supe-
rior frontal cortices. The localization of outflow nodes at

central sensorimotor area is consistent with the study by
Debnath et al. (2019) on desynchronization of Mu Rhythm
of EEG (i.e., alpha frequency band recording in central local-
ization) in infants’ mirror system activity, which finds evi-
dent Mu-based activation over central regions during both
execution and observation of movements. The localization
of inflow nodes is also coincident with the functional mag-
netic resonance imaging (fMRI) study by Ge et al. (2023), in
which bilateral middle frontal gyrus and bilateral inferior
frontal gyrus are identified as important inflow clusters with
excellent performance in action perception classification.
Combining the current data with previous studies, we sug-
gest that, before the activation of mentalizing system, central
sensorimotor areas play the role of transmitting action per-
ception information to the anterior neural system for mirror
matching, in which frontal cortex is probably responsive for
maintaining and supervising perceptual information within
one’s working memory system.

Frontal-parietal-temporal causal connectivity related to
mentalization. During subsequent mentalizing process, effec-
tive connectivity networks were reorganized into a distinct
information transfer mode with causal directions originating
from frontal area to parietal, occipital, and temporal areas,
showing low topological similarity with the networks in early
visual perception and mirror matching periods. Specifically,

FIG. 11. Feature distributions and discrimination results for the change of nodal connection strength from TW3 to
TW4. EEG channels (A) at the prefrontal cortex, (B) at the left frontal area, and (C) at the right frontal area. Top: the
scattergrams of feature distribution of subject-based samples. The horizontal axis represents the change of inflow
strength from TW3 to TW4 and the vertical axis outflow strength. The blue, green, and red markers represent the sam-
ples from the Ug, Tg, and Sc conditions, respectively. Bottom: discrimination accuracy averaged from all the subjects
for the single-trial samples between each two-task conditions, based on LDA, SVM, and Naive Bayes methods. TW,
time window; EEG, electroencephalogram, LDA, linear discriminant analysis; SVM, support vector machine.
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there are significant differences of the OPDC measures
between task conditions (Fig. 10), in which understanding
other’s unintelligible action (Sc condition) induces higher
directed connections from prefrontal to right inferior fronto-
temporal areas and directed links from parietal to right fronto-
temporal areas. Compared with usual, rational, or normal
actions, intention recognition from irrational, implausible, or
unusual actions is cognitively highly demanding and requires
extra mental effort (Catmur, 2015; Van Overwalle and Baet-
ens, 2009). Previous dynamic network research has suggested
that higher cognitive effort can drive increased inter-regional
interactions (Kitzbichler et al., 2011). Therefore, under Sc
condition, the stronger right frontotemporal directed connec-
tion can be attributed to increased demand for inference func-
tion, and right parietal-temporal directed links are crucial for
the representation of goals and intentions, to detect real pur-
pose of action executor while observer cannot acquire other’s
intention from direct perception(Becchio et al., 2012; Brass
et al., 2007; Van Overwalle and Baetens, 2009). Besides,
right frontal-temporal network is quite special for high-order
thinking activity, in which the right frontal cortex can be seen
as responsible for imagination and idea generation, and the
temporal lobes play an important role in idea editing and
evaluation (Flaherty, 2005). Therefore, under Sc condition,
the frontal cortex in mentalizing network is very likely to
work out why the action is being performed, control the infer-
ence process, and make correct judgment, while there is a
lack of enough action perception information.

The role of bridging hub of frontal cortex. Van Overwalle
and Baetens (2009) suggest that, if the brain areas involved
in mirror and mentalizing processes are overlapping, the two
systems might share a common functional core, that is, the
two systems may cooperate and inform each other. In this
study, although the direction and strength of the informa-
tion flows are significantly distinct between the early mir-
ror network and the later mentalizing network, time
ordering of information transfer revealed by the change of
“cause-effect” relationship among the participating areas
can give evidence about the core areas with shared infor-
mation exchange.
The graph-theoretical analysis of OPDC networks finds

that frontal area comprises the central high-degree nodes par-
ticipating in many short paths within the directed networks
formed in both mirror response and mentalization processes
and, consequently, acts as important controls of information
flow. In the reorganization of directed networks, frontal cor-
tex plays an important role of “effect” hub containing more
inflow nodes in mirror network and “cause” hub comprising
more outflow nodes in the mentalizing network. For the
nodes at frontal area successively serving as input and output
hubs in the cognitive process, further analysis for the compo-
sition of mirror and mentalizing networks provides evidence
that these nodes have the highest betweenness centrality
within the composition network and, thus, act as bridging
hubs between the sensorimotor-frontal community in mirror
network and frontal-parietal community in mentalizing net-
work (Fig. 9). When nodes are regarded as processes, not
static things, the centralized hub organizations can bridge the
gap between the parts in the dynamic directed networks
(Schlesinger et al., 2017; Taichi 2018; Yang et al., 2015).

EEG features of dynamic causality for identifying
action intentions

In the field of human–computer interaction, understanding
user’s intention according to action is key to build intelligent
systems and applications (Xiong et al., 2020; Yu et al., 2015).
Based on the dynamic information transmission from recog-
nizing action kinematics to inferring other’s intention, feature
extraction from OPDC-based directed networks was con-
ducted in the EEG channels at frontal area, according to the
special role of the frontal cortex in the hub reorganization of
directed network from mirror response to mentalization. The
changes in outflow strength and inflow strength of the nodes
belonging to frontal community constitute input features for
discriminating other’s intention-oriented and unintelligible
actions. The features identified by different classification algo-
rithms could provide effective EEG time-frequency measure-
ments and channel locations for further action intention
recognition across subjects and trials. The major problem is
that the classification accuracy of current data is unsatisfac-
tory. Further optimization in experimental task design, classi-
fication algorithm, feature extraction, and combination related
to rapid brain activity transition is needed to be systematically
explored and developed in the future research.

Conclusions

Using the OPDC method to decode dynamic fluctuations
in the brain network structure related to continuous cognitive
subprocesses, our study explored the interactive relationship
between mirror network and mentalizing network. According
to graph-theoretical analysis of directed network, the frontal
cortex is identified as the shared core area of the two networks
from input hubs transited to output hubs, consequently play-
ing the role of bridging hubs of information transfer between
mirror matching and intention inference processes. From the
perspective of brain network dynamics, this study helps peo-
ple deepen the understanding for the neural mechanism of
action intention understanding. In the field of human–
machine interaction, the EEG features extracted from this
study for recognizing different types of action intention have
potential application value for medical rehabilitation, such as
motor dysfunction caused by stroke, spinal cord injury, and
so on, by monitoring and analyzing patients’ EEG signals.

Authors’ Contributions

L.Z.: Conceptualization, formal analysis, data curation,
writing—original draft, and visualization. L.Z.: Supervision
and writing—review and editing. J.W.: Methodology. Y.Z.:
Resources, software, and funding acquisition.

Author Disclosure Statement

The authors declare no conflict of interest.

Funding Information

This work was supported, in part, by the Natural Science
Foundation of Jiangsu Province under Grant BK20221181,
the Natural Science Foundation of China under Grant
62077013, and the Fundamental Research Funds for the

14 ZHANG ET AL.

D
ow

nl
oa

de
d 

by
 1

88
.2

53
.1

21
.2

7 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
2/

11
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Central Universities under Grants 2242022k30036 and
2242022k30037.

References

Atique B, Erb M, Gharabaghi A, et al. Task-specific activity and
connectivity within the mentalizing network during emotion
and intention mentalizing. Neuroimage 2011;55(4):1899–1911;
doi: 10.1016/j.neuroimage.2010.12.036

Baker AP, Brookes MJ, Rezek IA, et al. Fast transient networks
in spontaneous human brain activity. Elife 2014;3(3):e01867;
doi: 10.7554/eLife.01867

Bayazi MJD, Nasrabadi AM, Curran T. Frequency-specific net-
work effective connectivity: ERP analysis of recognition
memory process by directed connectivity estimators. Med
Biol Eng 2021;1:1–16; doi: 10.1007/s11517-020-02304-8

Becchio C, Cavallo A, Begliomini C, et al. Social grasping:
From mirroring to mentalizing. Neuroimage 2012;61(1):
240–248; doi: 10.1016/j.neuroimage.2012.03.013

Berti S. Switching attention within working memory is reflected
in the p3a component of the human event-related brain poten-
tial. Front Hum Neurosci 2015;9:701–710; doi: 10.3389/
fnhum.2015.00701

Beudt S, Jacobsen T. On the role of mentalizing processes in
aesthetic appreciation: An ERP study. Front Hum Neurosci
2015;9:600; doi: 10.3389/fnhum.2015.00600

Blakemore SJ, Decety J. From the perception of action to the
understanding of intention. Nat Rev Neurosci 2001;2(8):
561–567; doi: 10.1016/j.yhbeh.2004.06.011

Blondel VD, Guillaume JL, Lambiotte R, et al. Fast unfolding of
communities in large networks. J Stat Mech 2008;2008(10):
P10008; doi: 10.1088/1742-5468/2008/10/p10008

Bola M, Sabel BA. Dynamic reorganization of brain functional
networks during cognition. Neuroimage 2015;114:398–413;
doi: 10.1016/j.neuroimage.2015.03.057

Bonini L, Rozzi S, Serventi FU, et al. Ventral premotor and
inferior parietal cortices make distinct contribution to action
organization and intention understanding. Cereb Cortex
2010;20(6):1372–1385; doi: 10.1093/cercor/bhp200

Brandone AC, Stout W. The origins of theory of mind in infant
social cognition: Investigating longitudinal pathways from
intention understanding and joint attention to preschool
theory of mind. J Cogn Dev 2023;24(3):375–396; doi: 10
.1080/15248372.2022.2146117

Brass M, Schmitt RM, Spengler S, et al. Investigating action
understanding: Inferential processes versus action simulation.
Curr Biol 2007;17(24):2117–2121; doi: 10.1016/j.cub.2007
.11.057

Buccino G, Baumgaertner A, Colle L, et al. The neural basis for
understanding non-intended actions. Neuroimage 2007;36
(Suppl 2):T119–T127; doi: 10.1016/j.neuroimage.2007.03.036

Bullmore E, Sporns O. Complex brain networks: Graph theoret-
ical analysis of structural and functional systems. Nat Rev
Neurosci 2009;10(3):186–198; doi: 10.1038/nrn2575

Catmur C. Understanding intentions from actions: Direct per-
ception, inference, and the roles of mirror and mentalizing
systems. Conscious Cogn 2015;36:426–433; doi: 10.1016/j
.concog.2015.03.012

Centelles L, Assaiante C, Nazarian B, et al. Recruitment of both
the mirror and the mentalizing networks when observing
social interactions depicted by point-lights: A neuroimaging
study. PLoS One 2011;6(1):e15749; doi: 0.1371/journal.pone
.0015749

Cheng Y, Meltzoff AN, Decety J. Motivation modulates the
activity of the human mirror-neuron system. Cereb Cortex
2007;17(8):1979–1986; doi: 10.1093/cercor/bhl107

Chiavarino C, Apperly IA, Humphreys GW. Understanding
intentions. Curr Dir Psychol Sci 2012;21(5):284–289; doi: 10
.1177/0963721412452727

De Lange FP, Spronk M, Willems RM, et al. Complementary
systems for understanding action intentions. Curr Biol 2008;
18(6):454–457; doi: 10.1016/j.cub.2008.02.057

Debnath R, Salo VC, Buzzell GA, et al. Mu rhythm desynchroni-
zation is specific to action execution and observation: Evidence
from time-frequency and connectivity analysis. Neuroimage
2019;184:496–507; doi: 10.1016/j.neuroimage.2018.09.053

Erdo†s P, Rényi A. On the strength of connectedness of a random
graph. Acta Math Hungar 1964;12(1–2):261–267; doi: 10
.1007/BF02066689

Flaherty AW. Frontotemporal and dopaminergic control of idea
generation and creative drive. J Comp Neurol 2005;493(1):
147–153; doi: 10.1002/cne.20768

Friston K, Moran R, Seth AK. Analysing connectivity with
Granger causality and dynamic causal modelling. Curr Opin
Neurobiol 2013;23(2):172–178; doi: 10.1016/j.conb.2012.11
.010

Gaetz W, Liu C, Zhu H, et al. Evidence for a motor gamma-
band network governing response interference. Neuroimage
2013;74:245–253; doi: 10.1016/j.neuroimage.2013.02.013

Gardner T, Goulden N, Cross ES. Dynamic modulation of the
action observation network by movement familiarity. J Neuro-
sci 2015;35(4):1561–1572; doi: 10.1523/JNEUROSCI.2942-
14.2015

Ge S, Ding MY, Zhang Z, et al. Temporal-spatial features of
intention understanding based on EEG-fNIRs bimodal mea-
surement. IEEE Access 2017;5:14245–14258; doi: 10.1109/
ACCESS.2017.2723428

Ge S, He J, Lin P, et al. Effective connectivity analysis and clas-
sification of action observation from different perspectives:
An fMRI study. IEEE Trans Biomed Eng 2023;70(2):
723–734; doi: 10.1109/TBME.2022.3201547

Ge S, Liu H, Lin P, et al. Neural basis of action observation and
understanding from first- and third-person perspectives: An
fMRI study. Front Behav Neurosci 2018;12:283–210; doi: 10
.3389/fnbeh.2018.00283

Ge S, Wang P, Liu H, et al. Neural activity and decoding of
action observation using combined EEG and fNIRS measure-
ment. Front Hum Neurosci 2019;13:357–315; doi: 10.3389/
fnhum.2019.00357

Gramfort A, Papadopoulo T, Olivi E, et al. OpenMEEG: Open-
source software for quasistatic bioelectromagnetics. Biomed
Eng Online 2010;9(1):45; doi: 10.1186/1475-925X-9-45

Herrmann CS, Frund I, Lenz D. Human gamma-band activity:
A review on cognitive and behavioral correlates and network
models. Neurosci Biobehav Rev 2010;34(7):981–992; doi: 10
.1016/j.neubiorev.2009.09.001

Hipp JF, Hawellek DJ, Corbetta M, et al. Large-scale cortical
correlation structure of spontaneous oscillatory activity. Nat
Neurosci 2012;15(6):884–890; doi: 10.1038/nn.3101

Huang D, Ren A, Shang J, et al. Combining partial directed
coherence and graph theory to analyse effective brain net-
works of different mental tasks. Front Hum Neurosci 2016;
10:235–211; doi: 10.3389/fnhum.2016.00235

CAUSALITY IN ACTION INTENTION UNDERSTANDING 15

D
ow

nl
oa

de
d 

by
 1

88
.2

53
.1

21
.2

7 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
2/

11
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1016/j.neuroimage.2010.12.036
http://dx.doi.org/10.7554/eLife.01867
http://dx.doi.org/10.1007/s11517-020-02304-8
http://dx.doi.org/10.1016/j.neuroimage.2012.03.013
http://dx.doi.org/10.3389/fnhum.2015.00701
http://dx.doi.org/10.3389/fnhum.2015.00701
http://dx.doi.org/10.3389/fnhum.2015.00600
http://dx.doi.org/10.1016/j.yhbeh.2004.06.011
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1016/j.neuroimage.2015.03.057
http://dx.doi.org/10.1093/cercor/bhp200
http://dx.doi.org/10.1080/15248372.2022.2146117
http://dx.doi.org/10.1080/15248372.2022.2146117
http://dx.doi.org/10.1016/j.cub.2007.11.057
http://dx.doi.org/10.1016/j.cub.2007.11.057
http://dx.doi.org/10.1016/j.neuroimage.2007.03.036
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1016/j.concog.2015.03.012
http://dx.doi.org/10.1016/j.concog.2015.03.012
http://dx.doi.org/0.1371/journal.pone.0015749
http://dx.doi.org/0.1371/journal.pone.0015749
http://dx.doi.org/10.1093/cercor/bhl107
http://dx.doi.org/10.1177/0963721412452727
http://dx.doi.org/10.1177/0963721412452727
http://dx.doi.org/10.1016/j.cub.2008.02.057
http://dx.doi.org/10.1016/j.neuroimage.2018.09.053
http://dx.doi.org/10.1007/BF02066689
http://dx.doi.org/10.1007/BF02066689
http://dx.doi.org/10.1002/cne.20768
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.neuroimage.2013.02.013
http://dx.doi.org/10.1523/JNEUROSCI.2942-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.2942-14.2015
http://dx.doi.org/10.1109/ACCESS.2017.2723428
http://dx.doi.org/10.1109/ACCESS.2017.2723428
http://dx.doi.org/10.1109/TBME.2022.3201547
http://dx.doi.org/10.3389/fnbeh.2018.00283
http://dx.doi.org/10.3389/fnbeh.2018.00283
http://dx.doi.org/10.3389/fnhum.2019.00357
http://dx.doi.org/10.3389/fnhum.2019.00357
http://dx.doi.org/10.1186/1475-925X-9-45
http://dx.doi.org/10.1016/j.neubiorev.2009.09.001
http://dx.doi.org/10.1016/j.neubiorev.2009.09.001
http://dx.doi.org/10.1038/nn.3101
http://dx.doi.org/10.3389/fnhum.2016.00235


Kaiser M. A tutorial in connectome analysis: Topological and
spatial features of brain networks. Neuroimage 2011;57(3):
892–907; doi: 10.1016/j.neuroimage.2011.05.025

Kitzbichler MG, Henson RN, Smith ML, et al. Cognitive effort
drives workspace configuration of human brain functional
networks. J Neurosci 2011;31(22):8259–8270; doi: 10.1523/
JNEUROSCI.0440-11.2011

Kumar N, Jaiswal A, Roy D, et al. Effective networks mediate
right hemispheric dominance of human 40 Hz auditory
steady-state response. Neuropsychologia 2023;184:108559;
doi: 10.1101/2023.02.02.526849

Liew SL, Han S, Aziz-Zadeh L. Familiarity modulates mirror
neuron and mentalizing regions during intention understand-
ing. Hum Brain Mapp 2011;32(11):1986–1997; doi: 10.1002/
hbm.21164

Möhring N, Brandt ESL, Mohr B, et al. ERP adaptation pro-
vides direct evidence for early mirror neuron activation in the
inferior parietal lobule. Int J Psychophysiol 2014;94(1):
76–83; doi: 10.1016/j.ijpsycho.2014.07.001

Oberman LM, Pineda JA, Ramachandran VS. The human mir-
ror neuron system: A link between action observation and
social skills. Soc Cogn Affect Neurosci 2007;2(1):62–66;
doi: 10.1093/scan/nsl022

Omidvarnia A, Azemi G, Boashash B, et al. Measuring time-
varying information flow in scalp EEG signals: Orthogonal-
ized partial directed coherence. IEEE Trans Biomed Eng
2014;61(3):680–693; doi: 10.1109/TBME.2013.2286394

Opsahl T, Agneessens F, Skvoretz J. Node centrality in
weighted networks: Generalizing degree and shortest paths.
Soc Networks 2010;32(3):245–251; doi: 10.1016/j.socnet
.2010.03.006

Polich J. Updating P300: An integrative theory of P3a and P3b.
Clin Neurophysiol 2007;118(10):2128–2148; doi: 10.1016/j
.clinph.2007.04.019

Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mecha-
nisms underlying the understanding and imitation of action.
Nat Rev Neurosci 2001;2(9):661–670; doi: 10.1038/35090060

Rubinov M, Sporns O. Complex network measures of brain con-
nectivity: Uses and interpretations. Neuroimage 2010;52(3):
1059–1069; doi: 10.1016/j.neuroimage.2009.10.003

Schlesinger KJ, Turner BO, Grafton ST, et al. Improving resolu-
tion of dynamic communities in human brain networks
through targeted node removal. Plos One 2017;12(12):
e0187715–e0187728; doi: 10.1371/journal.pone.0187715

Seth AK. A matlab toolbox for granger causal connectivity anal-
ysis. J Neurosci Methods 2010;186(2):262–273; doi: 10
.1016/j.jneumeth.2009.11.020

Sporns O, Honey CJ, Kötter R. Identification and classification of
hubs in brain networks. Plos One 2007;2(10):e1049; doi: 10
.1371/journal.pone.0001049

Spunt RP, Satpute AB, Lieberman MD. Identifying the what,
why, and how of an observed action: An fMRI study of men-
talizing and mechanizing during action observation. J Cogn
Neurosci 2011;23(1):63–74; doi: 10.1162/jocn.2010.21446

Tadel F, Baillet S, Mosher JC, et al. Brainstorm: A user-friendly
application for MEG/EEG analysis. Comput Intell Neurosci
2011;2011(8):879716; doi: 10.1155/2011/879716

Taichi H. Open networks from within: Input or output between-
ness centrality of nodes in directed networks. Appli Netw Sci
2018;3(1):15; doi: 10.1007/s41109-018-0076-1

Tidoni E, Borgomaneri S, di Pellegrino G, et al. Action simula-
tion plays a critical role in deceptive action recognition. J Neu-
rosci 2013;33(2):611–623; doi: 10.1523/JNEUROSCI.2228-
11.2013

van den Heuvel MP, Sporns O. Network hubs in the human
brain. Trends Cogn Sci 2013;17(12):683–696; doi: 10.1016/j
.tics.2013.09.012

Van Overwalle F, Baetens K. Understanding others’ actions and
goals by mirror and mentalizing systems: A meta-analysis.
Neuroimage 2009;48(3):564–584; doi: 10.1016/j.neuroimage
.2009.06.009

Vezoli J, Bastos A, Bosman C, et al. Inter-areal causal interac-
tions in the gamma and beta frequency bands define a func-
tional hierarchy in the primate visual system. Perception
2013;42(6):143–143.

Woodward AL, Gerson SA. Mirroring and the development of
action understanding. Philos Trans R Soc Lond B Biol Sci
2014;369(1644):20130181; doi: 10.1098/RSTB.2013.0181

Xiong X, Yu Z, Ma T, et al. Classifying action intention under-
standing EEG signals based on weighted brain network met-
ric features. Biomed Signal Proces 2020;59:101893; doi: 10
.1016/j.bspc.2020.101893

Yang Y, Gu G, Guo H, et al. Early event-related potential com-
ponents in face perception reflect the sequential neural activ-
ities. Acta Physiol Sin 2011;63(2):97–105; doi: 10.1007/
s12583-011-0153-1

Yang C, Qiu J, He H. Exponential synchronization for a class of
complex spatio-temporal networks with space-varying coeffi-
cients. Neurocomputing 2015;151:401–407; doi: 10.1016/j
.neucom.2014.09.025

Yu Z, Kim S, Mallipeddi R, et al. 2015. Human intention under-
standing based on object affordance and action classification.
In: IEEE international joint conference on neural networks,
pp. 1–6; doi: 10.1109/IJCNN.2015.7280587

Zhang L, Gan JQ, Zheng W, et al. Spatiotemporal phase syn-
chronization in adaptive reconfiguration from action observa-
tion network to mentalizing network for understanding
other’s action intention. Brain Topogr 2018;31(3):447–467;
doi: 10.1007/s10548-017-0614-7

Zhang Q, Hu Y, Potter T, et al. Establishing functional brain
networks using a nonlinear partial directed coherence method
to predict epileptic seizures. J Neurosci Methods 2020;329:
108447; doi: 10.1016/j.jneumeth.2019.108447

Address correspondence to:
Yanmei Zhu

Nanjing Xiaozhuang University
No. 3601

Hongjing Avenue
Jiangning District

Nanjing
PR China

E-mail: zhuyanmei@njxzc.edu.cn

16 ZHANG ET AL.

D
ow

nl
oa

de
d 

by
 1

88
.2

53
.1

21
.2

7 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
2/

11
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1016/j.neuroimage.2011.05.025
http://dx.doi.org/10.1523/JNEUROSCI.0440-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.0440-11.2011
http://dx.doi.org/10.1101/2023.02.02.526849
http://dx.doi.org/10.1002/hbm.21164
http://dx.doi.org/10.1002/hbm.21164
http://dx.doi.org/10.1016/j.ijpsycho.2014.07.001
http://dx.doi.org/10.1093/scan/nsl022
http://dx.doi.org/10.1109/TBME.2013.2286394
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1016/j.clinph.2007.04.019
http://dx.doi.org/10.1016/j.clinph.2007.04.019
http://dx.doi.org/10.1038/35090060
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1371/journal.pone.0187715
http://dx.doi.org/10.1016/j.jneumeth.2009.11.020
http://dx.doi.org/10.1016/j.jneumeth.2009.11.020
http://dx.doi.org/10.1371/journal.pone.0001049
http://dx.doi.org/10.1371/journal.pone.0001049
http://dx.doi.org/10.1162/jocn.2010.21446
http://dx.doi.org/10.1155/2011/879716
http://dx.doi.org/10.1007/s41109-018-0076-1
http://dx.doi.org/10.1523/JNEUROSCI.2228-11.2013
http://dx.doi.org/10.1523/JNEUROSCI.2228-11.2013
http://dx.doi.org/10.1016/j.tics.2013.09.012
http://dx.doi.org/10.1016/j.tics.2013.09.012
http://dx.doi.org/10.1016/j.neuroimage.2009.06.009
http://dx.doi.org/10.1016/j.neuroimage.2009.06.009
http://dx.doi.org/10.1098/RSTB.2013.0181
http://dx.doi.org/10.1016/j.bspc.2020.101893
http://dx.doi.org/10.1016/j.bspc.2020.101893
http://dx.doi.org/10.1007/s12583-011-0153-1
http://dx.doi.org/10.1007/s12583-011-0153-1
http://dx.doi.org/10.1016/j.neucom.2014.09.025
http://dx.doi.org/10.1016/j.neucom.2014.09.025
http://dx.doi.org/10.1109/IJCNN.2015.7280587
http://dx.doi.org/10.1007/s10548-017-0614-7
http://dx.doi.org/10.1016/j.jneumeth.2019.108447
mailto:zhuyanmei@njxzc.edu.cn

