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Abstract—Robot manipulator control is a complicated multi-
tasking problem in reality. It includes not only basic tracking
task, but also additional tasks, such as conquering joint angle
limits, posture control. However, most existing works only con-
sider the goal of tracking and formulate it as single-layered time-
variant problems, which leads to impracticality. In this work,
robot manipulator control problem is formulated as four-layered
time-variant equations including linear, nonlinear equalities and
inequalities. Each layer formulates one subtask: The first layer of

nonlinear equality describes basic tracking task based on forward
kinematics; The second layer and third layer are inequalities,
which describe joint angle upper and lower limits; The last
layer is a linear equality with respect to joint angle velocity,
which could be designed by user to describe other task, such
as posture control. To solve this complicated four-layered time-
variant problem, it is converted as single-layered equation based
on the zeroing neural dynamics method. Then, continuous-time
solution is proposed. Furthermore, discrete-time algorithm is
proposed based on a third-order time-discretization formula and
continuous-time solution. Numerical experiments illustrate the
effectiveness and superiority compared to existing work.

Index Terms—Robot manipulator control, Zeroing neural dy-
namics, Multitasking problem, Four-layered time-variant equa-
tions

I. INTRODUCTION

The problem of robot manipulator control is significant

in robotics, which appears in most robotic applications [1]–

[4]. Recent years, increasing attentions to this problem have

been given because the requirements of real-time control and

high accuracy increase urgently to satisfy needs of more

intelligent industry. Besides, robot manipulator control is a

complicated multitasking problem in reality. It includes not

only basic tracking task, but also additional tasks, such as

conquering joint angle limits, posture control. Every tasks

have to be completed simultaneously during control process.

Thus, it is rigorous to algorithm developing for satisfying such

requirements.
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Classical methods to develop robot control algorithms in-

clude PID method, sliding mode control, self-adaptive method

and so on [1]–[6]. In [4], a universal motion model was

developed to solve the manipulator control problem of photo-

voltaic cleaning robots by transforming it into the stabilization

problem of the error system. In [5], a sliding mode controller

was designed to track each joints of created two joint robot

model, which is designed by combining the mathematical

model and dynamic characteristics of the robot system. In

[6], trajectory tracking problem of a spherical robot was

investigated using adaptive PID controller, which is an attempt

to the control problem of other similar underactuated mobile

robots. These existing works using classical methods usually

consider dynamics of robots, robust performances and so on,

which perform well in some applications. However, these

methods may have some disadvantages such as poor real-

time performance and time-consuming parameters adjustment.

Recent years, deep reinforcement learning method has been

applied to the developments of robot control algorithms. In

[7], a hybrid control strategy combined mode-based control

and actor-critic based deep reinforcement learning method was

presented to solve the tracking control problem of nonholo-

nomic wheeled mobile robots. However, this method is based

on deep neural networks, which exists uncertainty during the

control process.

Recent years, more and more researchers have investi-

gated the robot manipulator control problem via formulating

it as time-variant problems [8]–[13]. Because time-variant

problems could be solved systematically by zeroing neural

dynamics and this kind of formulations make the corre-

sponding control algorithms have great performance in many

aspects. For example, in [8], the robot manipulator control

was formulated as time-variant matrix inversion, which was

solved by zeroing neural dynamics (or say, Zhang neural

network) method as well as a second-order time-discretization

formula. This method of formulating robot control as time-

variant problems has advantages in control accuracy and real

time. However, as limited by solution method, it is usually

formulated as relatively easy-handled time-variant problems,

such as time-variant linear and nonlinear system. It leads to

the failure of multitasking descriptions.
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In this work, we formulate robot manipulator control prob-

lem as four-layered time-variant equations including linear,

nonlinear equalities and inequalities. Each layer formulates

one subtask: The first layer of nonlinear equality describes

basic tracking task based on forward kinematics; The second

layer and third layer are inequalities, which describe joint

angle upper and lower limits; The last layer is a linear

equality with respect to joint angle velocity, which could

be designed by user to describe other task, such as posture

control. To solve this complicated four-layered time-variant

problem, it is converted as single-layered equation based on

the zeroing neural dynamics method. Then, continuous-time

solution is proposed. Furthermore, discrete-time algorithm is

proposed based on a third-order time-discretization formula

and continuous-time solution. Finally, numerical experiments

are conducted to illustrate the effectiveness of our algorithm.

The remainder of this paper is organized into five sections.

Section II is problem formulation, which describes robot

manipulator problem as four-layered time-variant equations.

Section III presents continuous-time solution via zeroing neu-

ral dynamics method. Section IV presents our discrete-time

algorithm. Section V shows many numerical results, which

substantiate the effectiveness and superiority of proposed

algorithm. Section VI is the conclusion of this work. The main

contributions are listed as below.

1) Robot manipulator control problem is described as four-

layered time-variant equations including linear, nonlinear

equalities and inequalities.

2) Continuous-time solution and discrete-time algorithm are

proposed on a basis of zeroing neural dynamics as well

as a third-order time-discretization formula.

II. PROBLEM FORMULATION OF ROBOT MANIPULATOR

CONTROL

The problem of robot manipulator control is formulated as

the following four-layered time-variant equations (FLTVE):


















θ

h(η(t)) = ld(t),

η(t)− η+(t) ≤ 0,

− η(t) + η−(t) ≤ 0,

A(t)η̇(t) +B(t)η(t) = d(t),

(1)

which includes linear, nonlinear equalities and inequalities.

h(·) ∈ Rm is forward kinematic map of robot; η(t) ∈ Rn

is joint angle vector, which is time-variant control variant;

ld(t) is time-variant desired path, which could only get online

(i.e., future information of desired path is unknown at current

instant); η+(t) ∈ Rn and η−(t) ∈ Rn are joint angle upper

and lower bounds, respectively. η̇(t) is the joint velocity.

Time-variant matrix A(t) ∈ Rj×n, B(t) ∈ Rj×n and vector

d(t) ∈ Rj could be constructed as needed to satisfy additional

requirements during robot control process.

It is evident that the problem of FLTVE (1) includes four

layers. The first layer is to formulate the forward kinematic

constraint such that the basic tracking task could be completed.

The second layer and third layer is to formulate joint angle

limits including upper and lower bounds, respectively. The

fourth layer is to formulate additional constraints during the

control process based on the constructed time-variant matrix

and vector. We take the planar serial robot manipulator as an

example, we could construct the matrix A(t) as [1, 1, ..., 1]
with 1 row and n columns, the matrix B(t) as zero and the

vector b(t) as zero such that the posture of last link of robot

manipulator remains fixed.

III. CONTINUOUS-TIME SOLUTION

The problem of FLTVE (1) includes four different layers

containing linear, nonlinear equalities and inequalities. Thus,

it is difficult to solve FLTVE (1) directly. In this work, we

solve it by transforming each layers into a uniform layer and

combine them together such that FLTVE (1) is equivalently

converted as a simple form. For more concise presentation,

notation t denoting time is omitted sometimes in this section.

Firstly, the first equation in FLTVE (1), i.e.,

h(η) = ld (2)

is equivalently converted as

J(η)η̇ = l̇d − λ(h(η) − ld), (3)

where J(η) is Jacobian matrix of the robot and defined as

J(η) =
∂h(η)

∂η
.

l̇d is the time derivative of ld. The derivation process of this

equivalency could be found in [13].

Secondly, the second equation of FLTVE (1), i.e.,

η − η+ ≤ 0 (4)

is equivalently converted as

[

I 2Λ
]

[

η̇

γ̇

]

= η̇+ − λ
(

η − η+ + γ.2
)

, (5)

where I ∈ Rn×n is the identity matrix; and Λ is denoted as

below:

Λ =











γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...

0 0 · · · γn











.

Besides, we define γ ∈ Rn as [γ1, γ2, ..., γn]
T, and γ.2 ∈ Rn

as [γ2
1 , γ

2
2 , ..., γ

2
n]

T. The derivation process of this equivalency

can be found in [14].

Thirdly, the third equation of FLTVE (1), i.e.,

−η + η− ≤ 0 (6)

is equivalently converted as

[

−I 2Γ
]

[

η̇

θ̇

]

= −η̇− − λ
(

θ.2 − η + η−
)

(7)
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where Γ is denoted as below:

Γ =











θ1 0 · · · 0
0 θ2 · · · 0
...

...
. . .

...

0 0 · · · θn











.

Besides, we define θ ∈ R
n as [θ1, θ2, ..., θn]

T, and θ.2 ∈ R
n

as [θ21, θ
2
2 , ..., θ

2
n]

T. The derivation process of this equivalency

is similar to the second equivalency, which is omitted for

compact presentation.

Based on the above analyses, we combine the above three

equivalent equations (i.e., equation (3), equation (5) and equa-

tion (7)) into the fourth layer of FLTVE (1), which correspond

to the first layer, second layer and third layer. Then, FLTVE

(1) is equivalently converted as below:

W (z)ż = ν, (8)

where z = [ηT, γT, θT]T,

W (z) =









J(η) 0 0
I 2Λ 0
−I 0 2Γ
A 0 0









(9)

and

ν =









l̇d − λ(h(η) − ld)
η̇+ − λ

(

η − η+ + γ.2
)

−η̇− − λ
(

θ.2 − η + η−
)

d−Bη









.

Thus, to solve complicated FLTVE (1) with four different

layers is converted to solve relatively simple equation (8),

which has single layer and linear form. Finally, the continuous-

time solution is derived as

ż = W+(z)ν, (10)

where + denotes pseudo-inverse operation. Note that

continuous-time solution (10) is one feasible solution among

infinite solutions of equation (8).

IV. DISCRETE-TIME ALGORITHM

In this section, a time-discretization formula is developed

firstly, and then a discrete-time algorithm is developed based

on this formula and continuous-time solution (10).

A. Time-discretization formula

Continuous-time solution (10) could be implemented by

ODE solvers directly. However, it may fail to satisfy the

requirement of real-time computation, which is quite important

in robot control. Based on previous work, real-time discrete-

time algorithms could be developed by using a special kind

of time-discretization formulas to discretize continuous-time

solution. This kind of time-discretization formulas have a

form of finite difference and must be one step ahead, i.e.,

ẋ(tk) = p1x(tk+1) + p2x(tk) + p3x(tk−1) + p4x(tk−2)....
Besides, the time-discretization formulas must satisfy the con-

straint of zero-stability, such that the corresponding algorithms

are convergent. In this work, a third-order time-discretization

formula is developed as below:

ẋ(tk) =
50

111ι
x(tk+1) +

7

222ι
x(tk)−

11

37ι
x(tk−1)

−
67

222ι
x(tk−2) +

13

111ι
x(tk−3) +O(ι3),

(11)

where ι denotes the sampling gap, i.e., ι = tk+1 − tk =
tk − tk−1 = tk−1 − tk−2... and O(ι3) is the truncation error.

We assume that x(t) has bounded fourth-order derivative.

Specifically, the following equations are obtained on the basis

of Taylor expansion because x(t) has bounded fourth-order

derivative:

x(tk+1) =x(tk) + ẋ(tk)ι+
x(2)(tk)

2!
ι2

+
x(3)(tk)

3!
ι3 +

x(4)(c1)

4!
ι4,

(12)

x(tk−1) =x(tk)− ẋ(tk)ι+
x(2)(tk)

2!
ι2

−
x(3)(tk)

3!
ι3 +

x(4)(c2)

4!
ι4,

(13)

x(tk−2) =x(tk)− 2ẋ(tk)ι+
x(2)(tk)

2!
(2ι)2

−
x(3)(tk)

3!
(2ι)3 +

x(4)(c3)

4!
ι4,

(14)

and

x(tk−3) =x(tk)− 3ẋ(tk)ι+
x(2)(tk)

2!
(3ι)2

−
x(3)(tk)

3!
(3ι)3 ++

x(4)(c4)

4!
ι4,

(15)

where x(2)(t), x(3)(t) and x(4)(t) denote the second-order,

third-order and fourth-order derivatives of x(t) with respect to

t, respectively; c1, c2, c3 and c4 lie in (tk, tk+1), (tk−1, tk),
(tk−2, tk) and (tk−3, tk), respectively; ! denotes the factorial

operator. Let (12) multiply 100; let (13) multiply −66; let (14)

multiply −67; and let (15) multiply 26. Adding together the

results yields new five-instant time-discretization formula (11)

with O(ι3) truncation error. The coefficients in formula (11)

is derived by four fundamental operations of above Taylor

expansions by trying. The readers may obtain general form

formulas based on previous work [15].

B. Development and analysis of discrete-time algorithm

Utilizing time-discretization formula (11) to discretize

continuous-time solution (10), we obtain discrete-time algo-

rithm. Specifically, based on time-discretization formula (11),

we have

ż(tk) =
50

111ι
z(tk+1) +

7

222ι
z(tk)−

11

37ι
z(tk−1)

−
67

222ι
z(tk−2) +

13

111ι
z(tk−3) +O(ι3),

(16)
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Fig. 1. (a) Robot trajectory and (b) end-effector trajectory generated by our algorithm (18)
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Fig. 2. Joint angle trajectories synthesized by our algorithm (18) and conventional algorithm (19) with constant joint angle limits.

where O(ι3) denotes a vector, in which each elements are

O(ι3). Combining equation (16) and continuous-time solution

(10) yields

W+(z(tk))ν(tk) =
50

111ι
z(tk+1) +

7

222ι
z(tk)−

11

37ι
z(tk−1)

−
67

222ι
z(tk−2) +

13

111ι
z(tk−3) +O(ι3).

It is exactly

z(tk+1) = −
7

100
z(tk) +

33

50
z(tk−1) +

67

100
z(tk−2)

−
13

50
z(tk−3) +

111

50
W+(z(tk))ν̃(tk) +O(ι4),

(17)

where ν̃(tk) = ιν(tk) shown as








ιl̇d(tk)− h(h(η(tk))− ld(tk))
ιη̇+(tk)− h

(

η(tk)− η+(tk) + γ.2(tk)
)

−ιη̇−(tk)− h
(

θ.2(tk)− η(tk) + η−(tk)
)

ιd(tk)− ιB(tk)η(tk)









with h = λι. Omitting the truncation error of (17), we obtain

discrete-time algorithm as below:

z(tk+1) = −
7

100
z(tk) +

33

50
z(tk−1) +

67

100
z(tk−2)

−
13

50
z(tk−3) +

111

50
W+(z(tk))ν̃(tk).

(18)

Theorem 1: Discrete-time algorithm (18) is 0-stable, con-

sistent and convergent, which converges with the truncation

error of order O(δ4).
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Fig. 3. Trajectories of sum of joint angles synthesized by our algorithm (18) and conventional algorithm (19) with constant joint angle limits.
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(a) With δ = 0.1 s
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(b) With δ = 0.01 s
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(c) With δ = 0.001 s

Fig. 4. Tracking errors defined as e(tk+1) = ‖la(tk+1) − ld(tk+1)‖ generated by our algorithm (18) and conventional algorithm (19) with (a) ι = 0.1 s,
(b) ι = 0.01 s and (c) ι = 0.001 s.

Proof: The 1st characteristic polynomial of discrete-time

algorithm (18) is

P4(ς) = ς4 +
17

100
ς3 −

33

50
ς2 −

67

100
ς +

13

50
,

Its four roots satisfy the 0-stability condition [16]. Thus,

discrete-time algorithm (18) is zero-stable. The second char-

acteristic polynomial of discrete-time algorithm (18) is σ(ς) =
111/50ς3. It is evident that P4(1) = 0 and P ′

4(1) = σ(1) 6= 0.

Thus, discrete-time algorithm (18) is consistent. Furthermore,

discrete-time algorithm (18) has an truncation error of O(ι4).
Finally, according to Dahlquist equivalence theorem [16],

discrete-time algorithm (18) is convergent, which converges

with the truncation error of order O(δ4). �

Note that discretization formulas significantly influence the

control precision, which may be a way to improve the tracking

performance of the proposed control scheme.

V. NUMERICAL EXPERIMENTS

In this section, we employ six-link planar robot manip-

ulator and do some numerical experiments to illustrate the

effectiveness of our algorithm (18). Each links of the robot

manipulator are 1 m. The forward kinematics and Jacobi

matrix of robot manipulator is assumed to be known. Initial

joint angle is set as [3π/4,−π/2,−π/4, π/6, π/3,−π/6]T

(rad). Initial value of intermediate variable vectors γ and θ

are set as [1, 1, 1, 1, 1, 1]T. Upper bound of joint angle is set

as η(t0) + π/12 and lower bound of joint angle is set as

η(t0) − π/12. Task duration is 80 s. Parameter h is set as

0.1. Desired path is shown as

ld(tk) =

[

(3 sin(πtk/8) + 3 sin(πtk/8)) cos(πtk/12)/10
3(sin(πtk/8)/3 + sin(πtk/8)) sin(πtk/12)/10

]

+c,

where c is constant vector, such that the initial position of

end-effector of robot manipulator is near the initial position

of desired path. The time derivative of desired path is approx-

imated by backward finite difference formula as below:

l̇d(tk) =
11

6ι
ld(tk)−

3

ι
ld(tk−1) +

3

2ι
ld(tk−2)−

1

3ι
ld(tk−3).

Note that the data of desired path and time derivative are get

online. We do not use future information at current instant

during the implementing of our algorithm. Firstly, to verify

the effectiveness of our algorithm, sampling gap is set as 0.01
s and employ our algorithm to complete the robot manipulator

control tasks, which includes basic tracking task, the task of

conquering joint angle limits and the task of posture control of

the last link. Here, matrix A(tk) is constructed as [1, 1, ..., 1]
and vector b(tk) is constructed as 0, such that the third subtask
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could be completed. For comparison, a conventional algorithm

[13] is shown as below:

θ(tk+1) =
9

4
J+(θ(tk)) (ιṙd(tk)− h (f(θ(tk))− rd(tk)))

−
1

8
θ(tk) +

3

4
θ(tk−1) +

5

8
θ(tk−2)−

1

4
θ(tk−3).

(19)

Numerical experimental results are shown in Fig. 1, Fig. 2

and Fig. 3. Fig. 1 shows the robot trajectory and end-effector

trajectory generated by our algorithm (18). Fig. 2 shows

joint angle trajectories synthesized by our algorithm (18) and

conventional algorithm (19) with constant joint angle limits.

Fig. 3 shows trajectories of sum of joint angles synthesized

by our algorithm (18) and conventional algorithm (19). One

can observe from Fig. 1 that the actual trajectory generated

by our algorithm (18) tracks the desired path online quickly,

which shows that the basic tacking task is completed. From

Fig. 2, one can observe that all joint angle values are always in

the joint angle limits during the whole process, which shows

that the task of conquering joint angle limits is completed.

In contrast, conventional algorithm (19) fails to complete this

task as its joint angle values are sometimes out of the limits.

From Fig. 3, it is observed that the sum of all joint angle values

generated by our algorithm (18) is invariant, which shows that

the task of posture control of the last link is completed. In

contrast, conventional algorithm (19) fails to do it.

To illustrate the precision of our algorithm (18) as well

as conventional algorithm (19), we employ different sampling

gap values and illustrate the tracking errors for different sam-

pling gap values. The other settings are the same as above. Nu-

merical results are shown in Fig. 4. Specifically, Fig. 4 shows

tracking errors defined as e(tk+1) = ‖la(tk+1) − ld(tk+1)‖
generated by our algorithm (18) and conventional algorithm

(19) with ι = 0.1 s, ι = 0.01 s and ι = 0.001 s. When

the tracking errors become steady states, the tracking errors

are around 10−5, 10−9 and 10−13 for ι = 0.1 s, ι = 0.01 s

and ι = 0.001 s, respectively. Thus, tracking error is O(ι4).
Bedsides, it can be observed that tracking errors generated by

conventional algorithm (19) is similar with those of algorithm

(18), which means that conventional algorithm (19) could

also complete the basic tracking task if no other tasks to be

completed simultaneously.

VI. CONCLUSION

In this paper, robot manipulator control has been formulated

as four-layered time-variant equations to describe compli-

cated multitasks of robot manipulator control, which makes

the control algorithm more practical. The four-layered time-

variant equations has been solved by converting it as single-

layered equation via zeroing neural dynamics. Furthermore,

based on a third-order time-discretization formula, our control

algorithm has been proposed. Finally, comparative numerical

experiments have been conducted to illustrate the effectiveness

of our algorithm. Besides, our algorithm has been compared

with another conventional algorithm, which shows the superi-

ority of our algorithm. Further studies include the evaluation

on the performance of the proposed method with stochastic

disturbances and noises and the performance with physical

experimental platform.
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